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Abstract 
Leptin receptor (LEPR) plays a vital role in obesity in humans and animals.  The objective of this study is to assess LEPR 
functional variants for chicken adipose deposition by integration of association and in-silico analysis using a unique chicken 
population, the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF).  Five 
online bioinformatics tools were used to predict the functionality of the single nucleotide polymorphisms (SNPs) in coding 
region.  Further, the possible structure–function relationship of high confidence SNPs was determined by bioinformatics 
analyses, including the conservation and stability analysis based on amino acid residues, prediction of protein ligand-binding 
sites, and the superposition of protein tertiary structure.  Meanwhile, we analyzed the association between abdominal fat traits 
and 20 polymorphisms of chicken LEPR gene.  The integrated results showed that rs731962924 (N867I) and rs13684622 
(C1002R) could lead to striking changes in the structure and function of proteins, of which rs13684622 (C1002R) was 
significantly associated with abdominal fat weight (AFW, P=0.0413) and abdominal fat percentage (AFP, P=0.0260) in 
chickens.  Therefore, we are of the opinion that rs13684622 (C1002R) may be an essential functional SNP affecting chicken 
abdominal fat deposition, and potentially applied to improvement of broiler abdominal fat in molecular marker-assisted 
selection (MAS) program.  Additionally, the coupling of association with computer electronic predictive analysis provides a 
new avenue to identify important molecular markers for breeders.
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1. Introduction

Poultry breeding, especially broiler breeding, has made 
remarkable achievements in the past half a century.  The 
daily gain, feed conversion rate, and disease resistance 
of broilers have been significantly improved.  However, 
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accompanied with intensive selection of the growth rate 
of broilers, the excessive deposition of body fat in broilers, 
especially abdominal fat, has also become a prominent 
problem in the poultry industry (Wang et al. 2004).  For 
broilers, excessive body fat leads to a reduced feed 
conversion rate and low economic value (Tian et al. 2010; 
Dong et al. 2015).  Therefore, it’s an urgent problem to 
be solved in the broiler industry to control the excessive 
accumulation of abdominal fat, and further improve the 
feed conversion rate and meat quality of broilers.  Chicken 
abdominal fat, however, is a complex trait controlled 
by multiple genetic and environmental factors, and its 
measurement is costly and laborious by slaughtering birds, 
which largely hinders genetic improvement based upon 
birds’ abdominal fat measures.  Marker-assisted selection 
(MAS) is one of the most effective methods to tackle this 
issue.

The identification of functional single nucleotide 
polymorphisms (SNPs) for complex disease or important 
economic traits is one of the research hotspots in humans 
and animals.  As far as research strategies are concerned, 
two main strategies, such as experimental and in-silico 
strategies are widely applied to identify functional variants 
for complex traits.  Over the past few years, using in-
silico tools to predict damaging or functional SNPs has 
been an efficient approach requiring less time and cost 
than experimental procedures, and preliminary screened 
damaging or functional SNPs are candidates for subsequent 
functional verification experiments (Zhang M et al. 2020).  

Some SNPs within gene coding region can lead to 
changes in the peptide sequence, which are called non-
synonymous SNPs (nsSNPs).  nsSNPs are important factors 
leading to the functional diversity of candidate genes in 
animal populations.  The functional prediction of nsSNPs 
based on bioinformatic tools will help us to better understand 
the relationship between observed phenotypic variation and 
genotype (Falomir-Lockhart et al. 2018).  More recently, 
researchers have carried out fruitful work on the analysis 
and prediction of functional gene mutations affecting animal 
traits of interest, such as screening for nsSNPs associated 
with bovine mastitis resistance (Jacob et al. 2020) and 
identifying the nsSNPs of KIT gene associated with grey 
phenotype in alpacas (Jones et al. 2019) via computational 
tools.  Nevertheless, considering the fact that SNPs used 
in this kind of research were derived from public databases 
of human and animal, functional SNPs identified would not 
always effective in other populations due to different genetic 
backgrounds, which could impede their application.  An 
efficient way to overcome this shortcoming would be that in-
silico analysis and association of SNP with traits or diseases 
of interest are integrated to characterize functionality of 
SNPs in target gene.

Leptin receptor (LEPR) is a high-affinity receptor of leptin 
and has a single transmembrane structure.  Leptin binds 
its receptor LEPR directly, to transfer the signal into muscle 
cells, and activate the fat metabolism pathway in muscle 
cells, and lead to the enhancement of fatty acid oxidation 
metabolism in muscle.  Many studies in mice and humans 
revealed that there is a close relationship between the LEPR 
gene and abdominal fat content.  Allensworth-James et al. 
(2015) found that ablation of LEPR caused severe growth 
hormone deficiency and abdominal obesity in male mice.  
Foucan et al. (2019) suggested an influence of K656N 
polymorphism in the LEPR gene on abdominal obesity in this 
Afro-Caribbean population of Guadeloupe Island.  Similarly, 
chicken LEPR plays a vital role in this signal transduction 
pathway, which is related to the deposition and distribution 
of fat (El Moujahid et al. 2014; Lei et al. 2015).  Lei et al. 
(2015) demonstrated that active immunization against 
chicken leptin receptor stimulates metabolism and reduces 
abdominal fat deposition in growing chickens.  In recent 
studies, expression of leptin and LEPR mRNA have been 
discovered in chicken duodenum, suggesting that LEPR 
of chicken also has a regulatory effect on appetite in the 
short term (Seroussi et al. 2019).  Previous studies have 
shown that some SNPs of LEPR gene were associated 
with production traits in chickens.  For example, nucleotide 
mutations in intron 8 and exon 9 of chicken LEPR gene 
were significantly associated with phenotypic variations in 
birth weight, abdominal fat weight (AFW), abdominal fat 
percentage (AFP), and liver weight (Gu et al. 2002; Wang 
S Z et al. 2019).  

Up to now, however, there is a lack of comprehensive 
investigation of functionality of SNPs within LEPR 
gene, especially in coding region, where the functional 
consequences of the changed amino acid caused by SNPs 
remain largely unclear.  It was hypothesized that there would 
be some functional SNPs, in exons of chicken LEPR gene 
in relation to AFW and AFP.  The purpose of this study is to 
identify the functional SNPs within the exon region of LEPR 
gene related to chicken fat deposition using both in-silico 
approach and association analysis.

2. Materials and methods 

2.1. Experimental populations and phenotypic 
measurements

The Northeast Agricultural University broiler lines divergently 
selected for abdominal fat content (NEAUHLF) have been 
selected since 1996 using percentage of abdominal fat 
and plasma very low-density lipoprotein concentration as 
selection criteria.  The G0 generation of the 2 lines came 
from the same grandsire line originating from the Arbor 
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Acres broiler, which was then divided into 2 lines according 
to plasma very low-density lipoprotein concentration at  
7 weeks of age (Leng et al. 2009).  The experimental materials 
of this study were derived from the 19th generation (G19) 
broilers of NEAUHLF.  A total of 329 cocks (159 individuals 
of fat line and 170 individuals of lean line) were used in this 
study.  These birds were kept under the same environmental 
conditions.  The temperature in the henhouse was kept at 
18 to 25°C, and the air humidity was maintained at 60 to 
65%.  The birds of each line were raised in two hatches 
and housed in pens.  All birds had free access to feed and 
water ad libitum.  Commercial corn-soybean-based diets 
that met all nutrient requirements of broilers recommended 
by National Research Council (NRC 1994) were provided to 
the birds.  From hatch to 3 weeks of age, the birds received 
a starter feed (metabolizable energy (ME), 3 000 kcal kg–1; 
crude protein (CP), 210 g kg–1) and from 4 weeks of age to 
slaughter the birds were fed a grower diet (ME, 3 100 kcal  
kg–1; CP, 190 g kg–1).  The live weight (body weight at  
7 weeks of age, BW7) was measured before slaughtering 
at 7 weeks of age.  All birds were slaughtered by cervical 
dislocation and exsanguination from the jugular vein.  Then 
abdominal fat weight (AFW, g) was manually separated and 
weighed and abdominal fat percentage (AFP (%)=(AFW 
(g)/Body weight (g))×100) was calculated according to the 
performance terms and measurement for poultry formulated 
by Chen et al. (2004) .

2.2. SNP data 

We constructed individual 350 bp DNA libraries for 329 
cocks of G19 of NEAUHLF, and carried out whole-genome 
re-sequencing.  A total amount of 1.5 μg DNA of each sample 
was taken as the input material for sample preparation.  The 
Truseq Nano DNA HT Sample Preparation Kit (Illumina, 
USA) was used to generate a sequencing library and index 
codes were added to the attribute sequence of each sample.  
After acoustic degradation, DNA fragments were end-
polished, A-tailed, and ligated with the full-length adaptor 
for Illumina sequencing with further PCR amplification.  
Then the PCR products were purified with AMPure XP 
System (Beckman Coulter, Beverly, CA, USA).  The size 
distribution of the library was analyzed by Agilent2100 
Biological Analyzer (Agilent, Santa Clara, CA, USA) and 
quantified by real-time PCR (Applied Biosystems, USA) 
(Zhang H et al. 2020).  

After alignment, variant calling was performed for 
all samples by using the Unified Genotyper function in 
GATK 3.3 Software.  SNPs were selected by using the 
VariantFiltration parameter in GATK.  Detailed description 
is presented in report by Zhang H et al. (2020).  A total of 
20 SNPs on LEPR exons (average coverage of 5.3-fold), 

were obtained, and their genotypes in G19 are available 
from re-sequencing.  

2.3. Screening functional nsSNPs with five in-silico 
analysis tools 

Sorts intolerant from tolerant (SIFT) (http://sift.jcvi.org/) is 
a sequence homology-based tool that predicts variation 
in protein function caused by the change in amino acid 
sequence.  Computational in-silico analysis using SIFT 
can predict 90% of damaging SNPs.  The functional 
consequences of amino acid substitutions caused due to 
nsSNPs were ascertained using the respective SIFT score.  

PhD-SNP is a Support Vector Machine (SVM) which 
uses evolutionary information to sort out SNPs related to 
Mendelian and complex diseases from the neutral ones 
(Elkhattabi et al. 2019)

SNPs&GO is also a SVM method that can accurately 
predict disease-related mutations from protein sequences 
(Porto et al. 2015).  The input is the FASTA sequence of the 
whole protein, while the output is based on the differences 
between the neutral and disease-related variations of the 
protein sequence (Capriotti et al. 2013).

PolyPhen-2.0 (http://genetics.bwh.harvard.edu/pph2/
uses) is an iterative algorithm that uses straightforward 
comparative and physical considerations to predict the 
possible impact of the substitution of an amino acid on the 
function and structure of a protein.

SNAP, which predicts the function of mutations, is based 
on a machine-learning device called a neural network.  
It determines the effect of non-synonymous SNPs by 
considering various sequence and variation characteristics.

2.4. Effect of amino acid substitutions on mutant 
protein stability

We used I Mutant 3.0 and MUpro servers to study the effects 
of amino acid substitution on the stability of mutant proteins.  
Stability change was expressed as DDG value in kcal mol–1 

at 25°C and pH 7.  The server performs a structure-based 
analysis of mutant proteins that are replaced on a single 
amino acid residue and provides estimates of free energy 
changes in mutant proteins (Alshatwi et al. 2012; Arshad 
et al. 2018; Khan et al. 2018).

2.5. Analysis of conserved residues in chicken LEPR 
protein

The Protein BLAST on NCBI online website was used to 
search for highly-homologous amino acid sequences of 
LEPR in different species, then Clustal-Omega (https://www.
ebi.ac.uk/Tools/msa/clustalo/) and Jalview Software were 
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used for multiple sequences alignment.  ConSurf (http://
consurftest.tau.ac.il) was used to associate SNPs with highly 
conserved buried and exposed amino acid residues in LEPR 
protein (Barr 2014; Nailwal and Chauhan 2017; Badgujar 
et al. 2019).  The common point of these two methods is 
to look for conserved amino acid sequence sites, the more 
conservative locus mutation, the more likely the LEPR 
function or structure on the impact of the protein.  

2.6. Prediction of disease-related amino acid 
substitution and phenotypes by MutPred2

MutPred2 is a standalone and web application developed to 
classify amino acid substitutions as pathogenic or benign, 
predicting the pathogenicity of amino acid substitutions and 
their molecular mechanisms.  It also predicts their impact on 
over 50 different protein properties, so that the molecular 
mechanism of pathogenicity can be inferred (Amir et al. 
2018; Arshad et al. 2018).

2.7. Prediction of ligand binding site with FTSite 
server

FTSite (http://ftsite.bu.edu) is an online web server that 
predicts the ligand-binding sites of proteins with high 
accuracy (Singh and Mahalingam 2017).  FTSite server 
was performed to find whether or not the identified nsSNPs 
present in LEPR protein-binding region (Saleh et al. 2016).

2.8. Comparison of secondary structures and 
homology modeling for structure prediction

SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.
pl?page=npsa_sopma.html) is a second-order protein 
prediction method based on the existing database, while 
SOPMA is its improved version, which can be self-optimized 
based on increasing the database to improve the prediction 
accuracy of the second-order protein structure (Agrahari 
et al. 2019; Islam et al. 2019; Wang Q et al. 2019).  

MODELLER v9.23 is a program for comparative protein 
structure modeling by satisfaction of spatial restraints and 
can calculate a model containing all non-hydrogen atoms 
automatically.  The user provides an alignment of a sequence 
with known related structures for homology or comparative 
modeling of three-dimensional protein structures (Guzzi et al. 
2020).  The generated structural model was selected and 
subjected for the structural validation using PROCHECK v3.5 
online tool (the quality of the protein structure was correctly 
evaluated by analyzing residue-by-residue geometry and 
whole structure geometry) (AbdulAzeez et al. 2016; Momen 
et al. 2017).  Using the ModRefiner tool of the I-TASSER 
online website for structural optimization and energy 

minimization (Xu and Zhang 2011; Dakal et al. 2017; Guttula 
et al. 2019).  The amino acid residue substitutions or mutant 
structures were generated using the VMD Software.  GLSL 
coloring method was used to highlight the three-dimensional 
structure of the sequence near the mutant amino acid site 
(Gomes et al. 2012).  The TM-align online tool (https://
zhanglab.ccmb.med.umich.edu/TM-align/) is used for protein 
structure alignment and RMSD value calculation (Rasal et al. 
2015; Dakal et al. 2017).

2.9. Association analysis of LEPR gene polymorphisms

JMP Software was used to analyze the association between 
polymorphic loci and abdominal fat traits.  The following 
mixed linear model was established according to data types 
and population characteristics:

Y=μ+Sire (Line)+Dam (Line, Sire)+G+Line+BW7+e
where Y is the observed value of the character (AFW and 
AFP), μ is the average value of the population, Sire (Line) is 
the random effect of Sire nested within the Line, Dam (Line, 
Sire) is the random effect of Dam nested within Sire and Line, 
G is the fixed effect of the SNP genotypes, Line is the fixed 
effect of the Line, BW7 is the covariate for AFW, and e is the 
residual random error.  Each individual was the experimental 
unit.  P<0.05 was considered statistically significant.  Multiple 
comparisons between least squares means of the different 
genotypes were performed by Tukey HSD.

3. Results

3.1. Distribution of SNP on LEPR gene

Sequencing results revealed that a total of 20 nsSNPs were 
on the exon of LEPR gene.  After these SNPs were matched 
to the dbSNP Database, we found that these 20 nsSNPs 
were known loci, then they were named with known ID.  
The genomic structure of the entire LEPR gene contains 
20 exons, spanning 30.0 kb (Fig. 1).  

3.2. Screening of nsSNPs based on functional 
analysis

A total of 20 nsSNPs were used for the prediction of their 
functional effects via PolyPhen-2, SNAP, SIFT, PhD-SNP, 
and SNPs&GO tools (Table 1).  Excessive fat deposition 
is a harmful phenotypic trait in chickens, so functional 
nsSNPs are also equivalent to damaging nsSNPs in this 
study.  These nsSNPs were predicted by PolyPhen-2 to 
have three different types of damages: Probably-damaging 
(score>0.96), Possibly-damaging (0.2<score<0.96), 
Benign (score<0.2).  The output of the SNAP was Neutral 
and Non-neutral (Bromberg and Rost 2007), including 
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only predictions with Expected Accuracy≥50% were 
considered valid.  SIFT algorithm predicts damaging and 
tolerated (non-damaging) substitutions based on sequence 
homology and physical properties of sequence submitted.  
The functional consequences of amino acid substitutions 
with normalized probabilities≤0.05 in a tolerance index 
were predicted to be damaging.  In contrast, those with 
normalized probabilities≥0.05 were predicted to be tolerated.  
The results of PhD-SNP and SNPs&GO showed that two 
nsSNPs (N867I and C1002R) were predicted as disease.

According to the results of the five different software tools 
shown in Table 2, two amino acid mutations (N867I and 
C1002R) were considered to be the most likely functional 
nsSNPs affecting abdominal fat traits in chickens.  We used 
the Venn Diagram package in R language to draw the Venn 
diagram (Fig. 2).

3.3. Analysis of nsSNPs based on stability

We predicted the stability alteration of single-site mutations 
of LEPR protein by I-Mutant 3.0 and Mupro (Kamaraj and 
Purohit 2013; Yakubu et al. 2017; AI-Shuhaib et al. 2018).  
The results showed that most nsSNPs decreased the 
stability of LEPR protein, while N179I, H786Y, N867I, and 
H998R were considered to increase the stability of LEPR 
protein by I-Mutant 3.0, and N179I was considered to 
increase the stability of LEPR protein by Mupro (Table 2).

3.4. Analysis of highly conserved amino acid 
residues

Protein BLAST in NCBI website was used to retrieve 
the LEPR amino acid sequences of five other highly-

homologous species, including Sus scrofa, Homo 
sapiens, Rattus norvegicus, Macaca mulatta, and Mus 
musculus.  Then Clustal-Omega online website was used 
for multiple sequence alignment (Li et al. 2018).  It could 
be concluded that amino acid N867 and amino acid C1002 
were both relatively conserved in the evolutionary process 
(Fig. 3).  The conserved parts of the amino acid residues of 
LEPR protein were calculated using ConSurf web server.  
We only enumerated the conserved residues that matched 
the two high-risk nsSNP positions we identified (Table 3).  
Fig. 4 showed the structure, function, and conservative 
results of the two high-risk nsSNPs in ConSurf.  According 
to the prediction results of ConSurf, the prediction result 
of amino acid N867 was consistent with that of multiple 
alignments (Fig. 3).  In contrast, the prediction result of 
amino acid C1002 was “Average” which was different from 
that of multiple sequence alignment.

3.5. Predicting the consequences of two of the most 
deleterious amino acid substitutions

The MutPred2 Web Tool can predict disease-associated 
phenotype and also identify the molecular cause of disease 
that results from amino acid substitution instigated by 
nsSNPs.  Combinations of high g scores and low P scores 
were referred to as valid hypotheses, with g>0.5 and P<0.05 
were referred to as actionable hypotheses, with g>0.75 
and P<0.05 were referred to as confident hypotheses.  The 
variation of N867I (g=0.517, P=0.03) and C1002R (g=0.605, 
P=0.03) was related to “Loss of B-factor” and “Loss of Loop” 
respectively (Table 4), and the confidence degree was 
actionable hypotheses.

Fig. 1  Distribution diagram of LEPR gene non-synonymous SNPs (nsSNPs) in chickens.
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is a slight change in the morphological characteristics of 
the secondary structure.  The secondary structures of the 
two proteins are not highly overlapped near the mutation 
site when CYS mutates to ARG (Fig. 6-B), part of the 
3-10-Helix structure and part of the Extended-Beta structure 

are missing near the mutation site, which shows that the 
mutation site has a significant impact on the local structure 
of LEPR protein.  Finally, the TM-align online network tool 
was used to compare the RMSD value and TM-score value 
of the modeled mutant proteins with the wild-type (Table 8) 
and come to the conclusion that the two mutation sites cause 
local structural changes in the LEPR protein as a whole.

3.9. Association between nsSNPs and abdominal fat 
traits in chickens

To determine which SNP(s) can affect chicken adipose 
deposit, we analyzed the association between genotypes 
of 20 nsSNPs in the coding region and abdominal fat 
traits.  We found that three SNPs were significantly 
correlated with both abdominal fat weight and abdominal 
fat percentage (P<0.05), which were rs737092972 
(g.4880A>T), rs314576713 (g.20927T>C), and rs13684622 
(g.21148T>C), respectively (Table 9).  Multiple comparison 
revealed that birds with genotype TT for rs737092972, CC 
for rs314576713, and CC for rs13684622 had more AFW 
and AFP than birds with their other genotypes (Appendix A).  

4. Discussion

The hypothesis that there would be functional SNPs, in 
exons of chicken LEPR gene in relation to AFW and AFP 
was supported by the results of the present study.  In this 

Table 2  I-Mutant 3.0 and Mupro analysis of protein’s stability change upon amino acid substitution1) 

SNP ID Position WT NEW
DDG (kcal mol–1)

 I-Mutant 3.0  Mupro
rs737525971 56 R W –0.56 –0.6551733
rs316177259 89 A T –0.31 –1.0840696
rs317099741 108 M T –0.85 –1.5634511
rs315715933 144 V M –1.82 –1.1523338
rs14657336 164 A T –0.77 –0.9387211
rs737092972 179 N I 0.73 0.0862024
rs317690053 271 D G –1.68 –1.5982548
rs315731207 534 N S –0.29 –1.0406707
rs732830371 646 T M –0.59 –0.2951729
rs733848113 750 T M –0.64 –0.1650687
rs741321300 786 H Y 0.76 –0.8247429
rs734723552 813 S C –1.29 –0.1304062
rs731962924 867 N I 1.78 –0.1328458
rs314576713 928 V A –1.72 –2.2953366
rs314218856 932 T M –0.28 –0.9905386
rs737333225 953 R H –1.08 –0.8516283
rs16649126 981 T S –0.69 –0.3189838
rs16649127 998 H R 0.29 –0.9303398
rs13684622 1002 C R –0.71 –1.3464352
rs734486891 1014 C R –1.57 –0.9754082
1) WT, amino acid in wild-type protein; NEW, new amino acid after mutation; DDG, DG (new protein)–DG (wild type) in kcal mol–1; 

DDG<0, decrease stability; DDG>0, increase stability.
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Fig. 2  Venn diagram of intersection of non-synonymous SNPs 
(nsSNPs) data in leptin receptor (LEPR) coding region.  Two 
SNPs, rs731962924 (N867I) and rs13684622 (N1002R), were 
predicted to be the most likely functional nsSNPs.
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study, we used various computer-based functional prediction 
methods to preliminarily screen the functional nsSNPs in the 
exon region of chicken LEPR gene.  Finally, we identified 
two underlying functional SNP (rs731962924 (N867I) 
and rs13684622 (C1002R)) on the exon of LEPR gene.  
Association analysis showed that rs13684622 (C1002R) 
was significantly associated with AFW and AFP in chickens 
and potentially applied to improvement of broiler abdominal 
fat in MAS program.  Our study provides a reference for 
carrying out corresponding cell experiments or other in vitro 
experiments in the future.

Studies have shown that the allelic variation of genes may 
be of potential importance to the genetic improvement of 
animals (Moreira et al. 2018).  The identification of functional 
SNP responsible for traits of interest in domesticated animals 
will provide reliable molecular markers for animal molecular 
breeding (Ewuola et al. 2018).  Given that the change of 
single base in the coding region of LEPR protein can lead 
to the change of amino acid, and affect the structure and 
function of the protein, here we focus on the effects of 
nsSNPs on the function of LEPR.  The results suggested 
that some of nsSNPs were predicted to be damaging and 
associated with phenotypic traits (AFW, AFP), whereas 
others were considered neutral.  Integration of SNP-trait 
association and in-silico analysis can make functional 
SNPs identified more reliable, and offer candidates for 
subsequent functional validation experiments.  Additionally, 
a combination of association and computer electronic 

predictive analysis provides an alternative avenue to identify 
important molecular markers for breeders.  

The interpretation of important phenotypic variations 
in production practice is still challenging because some 
SNPs may not have significant functional effects, or the 
frequency is very low (Arifuzzaman et al. 2020).  Besides, 
it is costly and time-consuming to identify nsSNPs related 
to a specific phenotype through traditional molecular 
experimental methods in a large population size.  In this 
case, in-silico analysis approach can reveal the biological 
consequences of these SNPs related to the structure 
and function of proteins more effectively.  Before in vivo 
experiments, computational tools can be effectively used 
to screen the related functional consequences of a large 
number of SNP.  In order to make the prediction results 
more accurate and reliable, we selected five frequently 
used bioinformatics tools (PolyPhen-2, SNAP, PhD-SNP, 
SNPs&GO and SIFT) to predict the function of nsSNPs in the 
exon region of chicken LEPR gene, and finally determined 
that rs731962924 (N867I) and rs13684622 (C1002R) were 
identified as possible functional nsSNPs (Fig. 2).  

Protein stability plays an important role in normal 
biological function, activity and regulation.  I- Mutant3.0 and 
Mupro were used to predict the change of protein stability 
based on unit point mutation.  The change of protein stability 
is usually accompanied by the change of free energy (ΔG).  
The results showed that most of the amino acid substitutions 
were highly unstable (Table 2).  These single amino acid 

Table 3  Conservative scores of two high-risk non-synonymous SNPs (nsSNPs) using ConSurf

SNP ID Residue & Position Conservation score Prediction
rs731962924 N867 9 Highly conserved and exposed
rs13684622 C1002 5 Average and buried

LEPR|Chicken/1-1148
LEPR|Sus/1-1165
LEPR|Homo/1-1165
LEPR|Rattus/1-1162
LEPR|Macaca/1-1163
LEPR|Mus/1-1162

Conservation

Quality

Consensus

867 1 002

Fig. 3  Highly homologous alignment of chicken leptin receptor (LEPR) protein and other species.  The lower three solid histograms 
from top to bottom were the conservatism of multi-sequence alignment, contrast quality, and consensus sequence.  The color was 
adjusted and edited by Jalview Software.
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mutations can cause abnormal protein folding, changes in 
main chain tension and electrostatic force, which in turn 
leads to the increase of protein aggregation or degradation 
(Wang et al. 2020).

It has been found that conserved sequences often 
correspond to important functional regions, and nsSNPs 
located at highly conserved sites are more likely to 
become functional SNP than non-conserved nsSNPs.  

Multiple sequence alignment among different species and 
ConSurf conservation estimation can be used to screen 
conserved sites of amino acid sequences, and screen 
possible functional nsSNPs.  It was confirmed that N867 
was a conservative amino acid site, while C1002 was highly 
conserved in the results of multiple sequence alignment, 
and ConSurf analysis showed “Average” (Fig. 3; Table 3).  
We believe that the difference between the two results 
occurs due to the poor conservation of amino acids around 
the amino acid C1002, which affects the conservation of C1002 
amino acids, or it may be caused by the lack of species 
used in multiple sequence alignment (Pollastri et al. 2002; 
Ezawa 2016).

Since LEPR gene is a high-affinity receptor for leptin, 
we used online bioinformatics tools to study the effect of 
nsSNPs on LEPR protein binding sites.  The prediction 

The conservation scale:

1 001 1 001 1 021 1 031 1 041

851 861 871 881 891

1 11 21 31 41

Variable Averge Conserved
1 2 3 4 5 6 7 8 9

: An exposed residue according to the neural-network algorithm
: An buried residue according to the neural-network algorithm
: An predicted functional residue (highly conserved and exposed)
: An predicted structural residue (highly conserved and buried)

Fig. 4  ConSurf analysis was performed on two high-risk non-synonymous SNPs (nsSNPs).

Table 4  Prediction of disease-related amino acid substitution and phenotypes by MutPred2

SNP ID Substitution MutPred2 score (g) Actionable hypotheses/
Confident hypotheses P-value Affected PROSITE and 

ELM motifs
rs731962924 N867I 0.517 Loss of B-factor 0.03 ELME000155
rs13684622 C1002R 0.605 Loss of Loop 0.03 ELME000328, PS00008

Table 5  Analysis of ligand binding site with FTSite Server

Binding site                                Amino acid residues
1 SER118 ASN119 TRP120 ASN121 ILE122 PRO215 LEU216 MET217 ASN317 LEU318 ASN319
2 LEU13 TRP84 SER85 ASN88 TYR566 GLU576 LEU577 TYR578 ILE590 GLU591 VAL592
3 TRP637 ARG638 THR639 VAL640 ASN719 LEU722 VAL810

Table 6  Percentage of the secondary structure of wild type 
and mutant type

Type Wild (%) N867I (%) C1002R (%)
Alpha helix 13.94 16.11 13.50
Extended strand 24.3 22.91 24.22
Beta turn 0.78 0.61 0.87
Random coil 60.98 60.37 61.41
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3.6. Prediction of ligand binding sites of LEPR 
protein with FTSite

We used FTSite server to predict whether the 
identified nsSNPs were present in the LEPR protein 
binding region.  We found three different binding 
sites (mesh loops) with different amino acid residues 
in the LEPR protein (Table 5).  Previously identified 
possible functional nsSNPs, rs731962924 (N867I) 
and rs13684622 (C1002R), were predicted not in 
the amino acid residues that participated in the 
binding sites above.

3.7. Changes of the secondary structure after 
mutation of LEPR protein

The changes in the secondary structure of LEPR 
protein caused by two high-risk site mutations were 
analyzed through the online website of SOPMA.  
Table 6 shows the average percentage of the total 
secondary structure content of the three protein 
systems on the trajectory, indicating the slight 
difference between wild-type and mutation-type 
systems.

3.8. Structural modeling and model quality 
inspection 

We used the MODELLERv9.23 Software to predict 
the 3D models of wild-type and mutant-type of 
LEPR proteins.  Structural homology modeling 
of LEPR proteins referred to four known protein 
structures in PDB database (Table 7).  Only 
percent identity>30% can be used for homologous 
modeling.  The high-resolution structure refinement 
and energy minimization of the atomic-level protein 
model was carried out by using the ModRefiner 
online tool in the I-TASSER website.  Then the 
Ramachandran plot diagram (Fig. 5) was drawn with 
PROCHECKv3.5 online tool to check the quality 
of the model.  Most of the amino acid residues 
(94.4%) were in the allowable region, accounting 
for 77.0% (795 amino acid residues) in the most 
favorable region and 17.4% (180 amino acid 
residues) in the additional allowable region, so it 
could be considered that the quality of the model 
was of fair quality and could be analyzed later.  
Then we used the 3D Visualization Software VMD 
to observe the changes of the protein structure 
from a mutant with native.  It can be observed that 
when ASN is mutated to ILE (Fig. 6-A), a part of 
Turn is missing near the mutation site, and there Ta
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of ligand binding sites has a wide range of applications, 
including structure-based functional prediction and 
explanation of the functional relationship between receptors 
and ligands among different proteins (Ngan et al. 2012).  In 
this study, the amino acid substitution caused by the two 
functional nsSNPs identified was not involved in the amino 
acid residues of the three binding sites.  So, we believe 
that these two nsSNPs may not cause changes in LEPR 
protein binding sites.

We used MutPred2 online website to predict the possible 
pathogenic molecular mechanism of two highly pathogenic 

nsSNPs.  The consequence of N867I is “Loss of B-factor”.  
The B-factor, also known as the “Temperature Factor” is an 
indicator of a protein’s static flexibility, and the loss of the 
B-factor may mean that the mutation leads to a decrease 
in the thermal stability of the LEPR protein (Duan et al. 
2016).  The consequence caused by C1002R is “Loss of 
Loop”.  Proteins use the conformational variability of the 
Loop region to perform different biological tasks, including 
molecular recognition and signal transduction.  Loss of 
Loop means that the mutation may cause the LEPR barrier 
when binding to leptin, thus affecting the information 

Table 7  Four known protein structures used in leptin receptor (LEPR) protein modeling

PDB ID Percent identity (%) Organism Molecule
6E2P 67.14 Homo sapiens Tyrosine-protein kinase JAK2
1BJ8 35.64 Homo sapiens GP130
1J0D 35.71 Pagrus major Olfactory marker protein
3BPL 34.95 Homo sapiens Interleukin-4

Fig. 5  Ramachandran plot of constructed leptin receptor (LEPR) protein.  Most of the amino acid residues were in the allowed region.
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transmission inside and outside the cell (Mandell et al. 
2009).

The structural model of proteins helps us to understand 
biological processes at the molecular level (Wiltgen 2009).  
Local conformational changes, such as conformational 
changes related to binding sites, may have greater 
negative effects on protein function, resulting in changes 
in pathogenicity or important animal traits.  For example, 
recently, Dakal et al. (2017) showed that some SNPs in 
human IL-8 proteins caused local changes in the structure–
function relationship, which might be associated with the 
occurrence of diseases such as cancer.  These experimental 
evidences support that intricate three-dimensional structural 
details are essential for protein function.  To further 

investigate how these mutations affect the structure and 
function of proteins, we analyzed the overlapping structures 
of wild-type and mutant (N867I and C1002R) proteins 
(shown in Fig. 6).  The effect of nsSNPs on protein structure 
and function can be better understood by mapping nsSNPs 
to the corresponding three-dimensional structure of the 
protein.  Based on four known protein structures (Table 7), 
the LPER tertiary structure of wild-type mutant protein 
was modeled by MODELLERv9.23 Software so as to infer 
possible structural-functional consequences of nsSNPs in 
LEPR protein.  Four known protein structures were used 
simultaneously, which would make the model constructed 
in this study more accurate than traditional methods (Webb 
and Sali 2014a, b; Al-Shuhaib et al. 2018).  With ModRefiner 
to further refine and minimize energy, the goal of energy 
minimization is to model protein structures without space 
collisions and potential energy to obtain the most stable 
structure of thermodynamically.  To extend our structural 
analysis, TM-score and RMSD were used to evaluate the 
topological similarity between wild-type and mutant models 
and the deviation of mutant structures from their original 
configuration (Li 2013).  The above results showed that the 
two identified nsSNPs could affect the protein structure in 
the mutation location, while the effect of C1002R on protein 
structure was more significant.  

A

B

ASN867
ASN867ILE867

ILE867

ARC1002
ARC1002CYS1002

CYS1002

Fig. 6  The structure of the mutant protein was superimposed on the wild-type leptin receptor (LEPR) protein.  A, asparagine (ASN) 
is mutated to isoleucine (ILE).  B, cysteine (CYS) is mutated to arginine (ARG).  Corresponding colors represent different secondary 
structures.  Alpha helix, purple; 3-10-helix, blue; Pi-helix, red; extended-beta, yellow; bridge-beta, tan; turn, cyan; coil, white. 

Table 8  The TM-align result after superposition of leptin 
receptor (LEPR) protein mutant and wild type1)

Mutation TM-score RMSD2)

N867I 0.9909 1.08
C1002R 0.9872 1.30
1) TM-align, an algorithm for protein structure alignment and 

comparison.  0.0<TM-score<0.30, random structural similarity; 
0.5<TM-score<1.00, in about the same fold. 

2) RMSD (root mean square deviation) is used to evaluate the 
average distance between the carbon skeletons of overlapping 
wild-type and mutant models.
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Association analysis indicated that there were three 
SNPs (rs737092972, rs314576713 and rs13684622) with 
significant effects on AFW and AFP.  However, they differed 
greatly in the number of genotypes (Appendix A).  This 
could be attributed to divergent selection for abdominal fat 
percentage of NEAUHLF, thereby leading to great changes 
of allele frequencies of these SNPs in LEPR gene, which 
in turn supports that LEPR gene could play a vital role in 
chicken adipose deposition.  The research work has brought 
about a discovery of consequences of the rs13684622 
(C1002R) in the structural and functional proprieties of the 
chicken LEPR protein using computational biology tools, 
which is in accordance with a significant association of the 
rs13684622 (C1002R) with AFW and AFP in chickens.  The 
homozygous genotype (CC) of rs13684622 (C1002R) can 
significantly increase AFW and AFP of chicken compared 
with the heterozygous genotype (TC), indicating that 
homozygous genotype (CC) is unfavorable genotype for 
reducing abdominal fat.  The findings may have a practical 
application in chicken breeding program.

5. Conclusion

Taken together, by using integration of computer-based 
functional prediction and SNPs-traits association analysis, 
we hold that rs13684622 (C1002R) mutant of LEPR may 
be an important functional SNP affecting chicken abdominal 
fat deposition, and promisingly applied to improvement of 

broiler abdominal fat in future MAS program.  Also, it is 
necessary that further functional experiments are designed 
to verify effects of this SNP on LEPR.
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Table 9  Association of 20 non-synonymous SNPs (nsSNPs) in exon of leptin receptor (LEPR) gene with AFW and AFP

No. SNP ID SNPs Position Location Sample size (n) MAF1) P-value (AFP)1) P-value (AFW)1)

1 rs737525971 g.2759C>T 28445793 Exon 4 329 T: 0.110942 0.8638 0.8925
2 rs316177259 g.2858G>A 28445892 Exon 4 329 G: 0.370821 0.8769 0.8552
3 rs317099741 g.2916T>C 28445950 Exon 4 329 C: 0.121581 0.0929 0.0394＊

4 rs315715933 g.3121G>A 28446155 Exon 5 329 A: 0.164134 0.2587 0.5545
5 rs14657336 g.4834G>A 28447868 Exon 6 329 G: 0.06079 0.0525 0.0709
6 rs737092972 g.4880A>T 28447914 Exon 6 329 T: 0.120061 0.0451＊ 0.0189＊

7 rs317690053 g.7123A>G 28450157 Exon 7 329 G: 0.182371 0.1111 0.1721
8 rs315731207 g.12507A>G 28455541 Exon 12 329 A: 0.183891 0.8489 0.9521
9 rs732830371 g.13186C>T 28456220 Exon 14 329 T: 0.115502 0.8171 0.8056
10 rs733848113 g.15493C>T 28458527 Exon 16 329 T: 0.112462 0.4788 0.1869
11 rs741321300 g.15600C>T 28458634 Exon 16 329 T: 0.161094 0.1409 0.1380
12 rs734723552 g.16220C>G 28459254 Exon 17 329 T: 0.118541 0.2268 0.1579
13 rs731962924 g.17521A>T 28460555 Exon 19 329 A: 0.24924 0.5378 0.4706
14 rs314576713 g.20927T>C 28463961 Exon 20 329 C: 0.117021 0.0326＊ 0.0037＊

15 rs314218856 g.20939C>T 28463973 Exon 20 329 T: 0.180851 0.1106 0.0377＊

16 rs737333225 g.21002G>A 28464036 Exon 20 329 A: 0.117021 0.4649 0.3419
17 rs16649126 g.21086C>G 28464120 Exon 20 329 C: 0.06079 0.1286 0.1577
18 rs16649127 g.21137A>G 28464171 Exon 20 329 A: 0.132219 0.0528 0.0600
19 rs13684622 g.21148T>C 28464182 Exon 20 329 T: 0.06383 0.0260＊ 0.0413＊

20 rs734486891 g.21184T>C 28464218 Exon 20 329 C: 0.121581 0.0636 0.0231＊

1) MAF, minor allele frequency; AFP, abdominal fat percentage; AFW, abdominal fat weight; cut off value=0.05.
＊ denotes significant effects of SNP genotypes on AFP and AFW (P<0.05).
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