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Integrative 3D genomics with multi-omics
analysis and functional validation of genetic
regulatory mechanisms of abdominal fat
deposition in chickens

Linyong Shen 1,2,3,4, Xue Bai1,2,3,4, Liru Zhao 1,2,3,4, Jiamei Zhou1,2,3,
Cheng Chang1,2,3, Xinquan Li1,2,3, Zhiping Cao1,2,3, Yumao Li1,2,3, Peng Luan1,2,3,
Hui Li 1,2,3 & Hui Zhang 1,2,3

Chickens are themost abundant agricultural animals globally, with controlling
abdominal fat deposition being a key objective in poultry breeding. While
GWAS can identify genetic variants associated with abdominal fat deposition,
the precise roles and mechanisms of these variants remain largely unclear.
Here, we use male chickens from two lines divergently selected for abdominal
fat deposition as experimental models. Through the integration of genomic,
epigenomic, 3D genomic, and transcriptomic data, we build a comprehensive
chromatin 3D regulatory network map to identify the genetic regulatory
mechanisms that influence abdominal fat deposition in chickens. Notably, we
find that the rs734209466 variant functions as an allele-specific enhancer,
remotely enhancing the transcription of IGFBP2 and IGFBP5 by the binding
transcription factor IRF4. This interaction influences the differentiation and
proliferation of preadipocytes, which ultimately affects phenotype. This work
presents a detailed genetic regulatory map for chicken abdominal fat
deposition, offering molecular targets for selective breeding.

Chicken, being the most widely consumed meat globally, is valued for
its high-quality protein content and cost-effectiveness1. However, traits
related to abdominal fat deposition (AFD) significantly impact meat
quality and production efficiency. Research indicates that excessive fat
accumulation in chickens can notably decrease feed conversion
efficiency2 and carcass lean meat rate3. Moreover, breeder chickens
with excessive fat can negatively affect egg production rate, fertiliza-
tion rate, and hatchability rate, potentially leading to increased mor-
tality during the laying period4. Therefore, effectively controlling AFD
in chickens is a crucial issue that requires urgent attention in chicken
breeding worldwide.

Furthermore, chickens are valuable model organisms in life
sciences research, playing a significant role in the study of human
obesity and related metabolic diseases5,6. They exhibit character-
istics similar to early stages of human type 2 diabetes such as high
blood glucose and insulin resistance7, making them an ideal animal
model for obesity research. For instance, the obesity-inducing virus
SMAM-1, which leads to obesity in chickens, has been found to have
similar effects in humans8. Moreover, several quantitative trait loci
associated with obesity in chickens contain genes linked to human
susceptibility to obesity9. Therefore, studying the regulatory
mechanisms of AFD traits in chickens also offers valuable insights

Received: 23 May 2024

Accepted: 18 October 2024

Check for updates

1College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China. 2Key Laboratory of Chicken Genetics and Breeding,
Ministry of Agriculture and Rural Affairs, Harbin 150030, PRChina. 3Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of
Heilongjiang Province, Harbin 150030, PR China. 4These authors contributed equally: Linyong Shen, Xue Bai, Liru Zhao. e-mail: lihui@neau.edu.cn;
huizhang@neau.edu.cn

Nature Communications |         (2024) 15:9274 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5115-1720
http://orcid.org/0000-0001-5115-1720
http://orcid.org/0000-0001-5115-1720
http://orcid.org/0000-0001-5115-1720
http://orcid.org/0000-0001-5115-1720
http://orcid.org/0009-0001-0604-0893
http://orcid.org/0009-0001-0604-0893
http://orcid.org/0009-0001-0604-0893
http://orcid.org/0009-0001-0604-0893
http://orcid.org/0009-0001-0604-0893
http://orcid.org/0000-0001-6282-5559
http://orcid.org/0000-0001-6282-5559
http://orcid.org/0000-0001-6282-5559
http://orcid.org/0000-0001-6282-5559
http://orcid.org/0000-0001-6282-5559
http://orcid.org/0000-0002-6331-6876
http://orcid.org/0000-0002-6331-6876
http://orcid.org/0000-0002-6331-6876
http://orcid.org/0000-0002-6331-6876
http://orcid.org/0000-0002-6331-6876
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53692-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53692-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53692-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53692-6&domain=pdf
mailto:lihui@neau.edu.cn
mailto:huizhang@neau.edu.cn
www.nature.com/naturecommunications


into understanding themolecularmechanisms of human obesity and
related diseases.

The AFD traits are a complex quantitative trait controlled by
multiple genomic variants with intricate genetic regulatory mechan-
isms. Recent research has made significant progress in identifying
genomic variants associated with AFD traits through genome-wide
association studies (GWAS). Despite these advancements, the func-
tional mechanisms of these variants, especially those located in non-
coding regions, remain poorly understood, leading to a ‘black box’
scenario regarding their specific effects on phenotype. Traditional
research methodologies, such as the ‘nearest gene model’ based on
locational proximity, simply assign the nearest gene as the regulatory
target of a genomic variant10. However, recent studies revealed that
approximately 75–76%of genomic variants affect target genes through
long–range interactions11, which challenges the effectiveness of the
‘nearest gene model’.

To overcome these limitations, many researchers have turned to
expression quantitative trait locus (eQTL) analysis, which aims to
identify correlations between genomic variants and the expression
levels of their corresponding target genes. International initiatives,
such as the Farm Animal Genotype–Tissue Expression (FarmGTEx)
project12–14, have contributed to extensive eQTL datasets on adipose
tissues from agricultural animals, enhancing our understanding of the
genetic mechanisms underlying genomic variants associated with
economic traits. However, eQTL analysis predominantly relies on sta-
tistical correlations and fails to directly elucidate the functionality of
genomic variants. Emerging epigenetic techniques suggest that var-
iants located in regulatory elements have functional implications15, but
thesemethods are limited in explicating how functional variants exert
their influence through specific gene regulation. In contrast,
three–dimensional (3D) genomics approaches based on the frequency
of physical chromatin interactions can predict target genes but often
neglect the significant influence of epigenetic activity on variants11,16,17.
Therefore, the integration of 3D genomics with multiple omics data-
sets is crucial for comprehensively understanding how noncoding
variants influence transcriptional regulation18–22.

In this study, we used two Northeast Agricultural University
Broiler Lines (NEAUHLF), which have been selected for divergent
abdominal fat content since 1996, as our experimental populations.
These two lines have proven to be ideal genetic models for investi-
gating the underlying mechanisms of obesity23. Building upon this, we
constructed an Integrative Multi–omics approach for Variant–Gene
Interactions (IMVGI) that considers genomic, epigenomic, 3D genomic,
and transcriptomic data and broadly analyzed how genomic variants
systematically affect the transcription regulatory mechanisms of AFD
traits. The strategy was to use whole–genome sequencing analysis of
the NEAUHLF to identify genomic variants in the chicken genome, and
selection signature analysis was used to identify variants associated
with AFD traits. Subsequently, the functionality of these variants was
annotated through epigenetic analysis, and their potential target genes
were identified through 3D genomic analysis. By further employing
weighted gene coexpression network analysis (WGCNA), we estab-
lished correlations between these target genes and AFD traits. Finally,
experimental validation revealed the role of crucial functional variants
in AFD traits and their regulatory mechanisms. In summary, our
research unveils a detailed framework that shows how genomic var-
iants influence transcriptional regulation associated with AFD traits,
providing insights into the genetic basis of these traits and identifying
significant targets for the molecular breeding of chicken AFD traits.

Results
Analysis of genomic selection signatures uncovers candidate
variants associated with fat deposition
In this research, we conducted a thorough investigation to identify
candidate variants related to abdominal fat deposition (AFD) traits.

Our research focused on a unique population of 330 chickens from the
Northeast Agricultural University broiler lines that were divergently
selected for abdominal fat content (NEAUHLF) for 19th generations
(years). Despite their similar body weights at 7 weeks of age (BW7),
chickens from the fat (FL) and lean (LL) lines displayed a notable
7.83–fold difference in abdominal fat weight (AFW) and a 7.51–fold
difference in abdominal fat percentage (AFP = AFW/BW7) (Fig. 1a, b
and Supplementary Fig. 1). This discrepancy underscores the sig-
nificant phenotypic divergence between the FL and LL groups in terms
of AFD traits.

Population structure analysis was subsequently conducted to
estimate the genomic relationship between these two groups.
Whole–genome sequencing (WGS) of these 330 individuals revealed
4,677,252 high–quality, filtered genomic variants (4,140,284 single
nucleotide polymorphisms (SNPs) and 536,968 insertions/deletions
(InDels)). Intriguingly, 20.01% of these variants were novel and were
not recorded in the dbSNP database (https://www.ncbi.nlm.nih.gov/
projects/SNP/snp_summary.cgi, last accessed on August 22, 2021)
(Fig. 1c). Admixture analysis partitioned the population into FL and LL
subpopulations at K = 2 (Fig. 1d), which was supported by principal
component analysis (PCA) (Fig. 1e). Linkage disequilibrium (LD) ana-
lysis indicated rapid degradation, particularly in the LL subpopulation,
suggesting intense selection pressure (Fig. 1f). The significant genetic
differences between the FL and LL groupsmake them ideal subjects for
studying traits influenced by artificial selection, such as AFD traits.

To identify candidate variants associated with AFD traits, we
employed selection signature analysis. We calculated the fixation
indices (FST) and θπ ratios across the genome, leading to the identifi-
cation of 2301 regions selected for fat traits (Fig. 1g–i). Remarkably,
72.23% of these regions overlapped with known quantitative trait loci
(QTLs) associatedwith the fat traits from the ChickenQTLdb24 (Fig. 1j),
suggesting their potential involvement in AFD traits. By focusing on
these regions,we identified variants that showed significant changes in
allele frequency (|ΔAF | ≥ 0.5) between FL and LL as candidate variants
linked to AFD traits. This process allowed us to identify 311,947 can-
didate variants associated with AFD traits, predominantly located in
noncoding intergenic/intronic regions (94.42%), posing challenges in
identifying the true functional variants and their target genes
(Fig. 1k, l).

Identification of potentially functional variants regulating fat
deposition using epigenomic techniques
To identify the potentially functional variants among the 311,947 var-
iants associated with AFD traits, we employed a comprehensive anno-
tation strategy. This methodology entailed the synthesis of data derived
from transposase–accessible chromatin sequencing (ATAC–seq) and
chromatin immunoprecipitation sequencing (ChIP–seq) of chicken
abdominal fat tissues to increase the precision of our identification
process.

In our analysis of open chromatin regions (OCRs) usingATAC–seq
data, we focused on identifying differentially open chromatin regions
(DOCRs) in abdominal fat tissues between the FL and LL groups, as
those showing statistically significant changes (p <0.05, |log2 (fold
change)| > 1). This approach led us to identify 128,090 OCRs, 4028 of
which met the criteria for classification as DOCRs (Fig. 2a, b). These
DOCRs exhibited distinct length characteristics and were pre-
dominantly enriched in regions flanking transcription start sites (TSSs)
(Fig. 2c, d). We further classified these DOCRs into distinct regulatory
elements (REs) based on their genomic features using ChIP-seq data.
Specifically, we identified 218 promoters (TSS −4 kb/+2 kb, H3K4me3,
H3K27ac), 1106 enhancers (H3K4me1, H3K27ac), 312 silencers
(H3K27me3), 2337 CTCF-enriched regions (marked by CTCF peaks),
and 1264 low-signal regions (regions lacking significant RE signals)
(Fig. 2e, f). Notably, some DOCRs may exhibit multiple regulatory
functions, leading to their classification as various types of REs
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(Supplementary Fig. 2a). These REs showed higher fold changes in
activity signals between FL and LL compared to low-signal regions
(Fig. 2g), and these low signal regions are highly conserved across all
biological replicate samples (Supplementary Fig. 2b), thereby enhan-
cing the credibility of our annotations.

Intriguingly, in addition to typical REs, we also identified a distinct
class of enhancers and silencers, termed superenhancers (SEs) and

supersilencers (SSs), respectively. SEs were defined by applying the
ranking of the ROSE pipeline25 to ATAC–seq and H3K4me1 signals,
which revealed 280 SEs in DOCRs (Fig. 2h). The authors of a recent
study referred to H3K27me3–rich genomic regions as SSs that pro-
mote gene repression through chromatin interactions26. Similar to the
identification of SEs, we defined SSs by utilizing the ROSE algorithm to
rank ATAC–seq signals and H3K27me3 signals. This method allowed
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for the recognition of 41 SSs in DOCRs (Fig. 2i). These SEs/SSs showed
stronger activity signals than regions with typical REs (Fig. 2j, k),
enhancing the credibility of our annotations.

After applying the comprehensive annotation strategy using
ATAC–seq andChIP–seqdata,we identified 2162 potentially functional
variants embedded within annotated REs. The functional relevance of
these variants is underscored by their distribution: approximately half
were significantly enriched at CTCF–binding sites (50.66%), and the
rest (45.24%) were nested within distal regulatory elements such as
enhancers, SEs, silencers, and SSs (Fig. 2l). The localization of these
2162 variants within REs has potential functional significance, as they
may influence the activity of these elements and consequently modify
the transcriptional regulation of target genes.

Identification of variant–gene interactions using
three–dimensional genomes
To investigate how 2162 potentially functional variants influence gene
regulatory mechanisms, we utilized Hi–C technology to perform
high–resolution genome–wide chromatin interaction mapping of the
abdominal fat tissues of the FL and LL groups (Supplementary Table 1).
Through this chromatin interaction mapping, we constructed chro-
matin interaction frequency plots, revealing complex chromatin
structures (A/B compartments, topologically associating domains
[TADs], and loops) in both the FL and LL genomes (Fig. 3a). Further-
more, we crafted individualized three–dimensional (3D) chromatin
models for FL and LL, revealingmarked structural differences between
the two groups. Notably, the LL group exhibited a weaker chromatin
conformation, as indicated by increased Von Neumann entropy27 and
decreased interaction frequencies (Fig. 3b–d, Supplementary
Figs. 3 and 4).

We conducted a comparative analysis of A/B compartments,
TADs, and loop structures between the FL and LL groups. Our analysis
at a 100 kb resolution revealed that only 6.16% of the total genomic
regions showed transitions between the A and B compartments in the
FL and LL groups, suggesting high conservation in these compartment
regions (Fig. 3e, f). Furthermore, a more refined 10 kb resolution
allowed us to identify a total of 3829 TAD boundaries, of which 2898
(75.69%) were shared by the two groups. Additionally, there were 483
(12.61%) FL–specific TAD boundaries and 448 (11.70%) LL–specific TAD
boundaries (Fig. 3g, h). Further examination of loop structures at
resolutions of 1, 5, 10, and 25 kb yielded a total of 4246 loops, with only
1243 (29.27%) loopsbeing sharedby the twogroups. Additionally, there
were 2100 (49.46%) FL–specific loops and 903 (21.27%) LL–specific
loops, which was further confirmed by CTCF enrichment at loop
anchors (Fig. 3i, j and Supplementary Fig. 4d). These findings under-
scored a notable disparity in TADs (24.31%) and loops (70.73%) struc-
tures between FL and LL, suggesting their potential regulatory roles.

We annotated the 2162 potentially functional variants associated
with AFD traits on the high–order structure of the 3D genome,
focusing on TAD boundaries and loops, to identify target genes
regulated by these variants. This process revealed four primary

transcriptional regulatory mechanisms mediated by functional var-
iants: (1) alterations in proximal RE activity, in which 552 functional
variants modulate the activity of 168 proximal REs (promoters, nearby
enhancers, and nearby silencers) to regulate the transcription of 154
target genes; (2) modifications in distal RE activity, in which 619
functional variants exert transcriptional control over 261 target genes
by altering the activity of 160 REs (enhancers and silencers); (3)
reconfiguration of the TAD structure, in which 40 functional variants
impact the transcription of 18 target genes by modifying 8 TAD
structures, particularly at CTCF binding sites located at TAD bound-
aries; and (4) loop structure alterations, in which 666 functional var-
iants regulate 267 distant target genes by influencing 163 loop
structures, especially at CTCF binding sites within loop anchor points
(Fig. 3k, l). In total, our analysis identified a compendium of 1169
functional variants that regulate the expression of 500 target genes by
influencing chromatin structures such as proximal and distal reg-
ulatory elements, TADs, and loop structures, resulting in a complex
network of 2559 variant–gene interactions.

Weighted gene coexpression network analysis reveals key
variant–gene interactions related to fat deposition
After identifying the target genes of potentially functional variants, we
employed weighted gene coexpression network analysis (WGCNA) to
explore the associations between the expression of target genes and
fat traits, thereby establishing comprehensive variant–gene networks
related to AFD traits. Upon detailed analytical consideration, a power
beta value of 11 was chosen forWGCNA to ensure a scale–free network
(Fig. 4a, b). Using this power beta value, 439 of the above 500 target
genes were successfully grouped into four distinct functional modules
(Fig. 4c). Specifically, the blue module encompassed 133 genes, the
turquoise module contained 172 genes, the brown module comprised
86 genes, and the yellow module included 48 genes. The remaining 61
genes, which did not exhibit a sufficiently strong coexpression rela-
tionship with the others, have been allocated to the gray group
in Fig. 4c.

The association analysis between the gene modules and pheno-
types revealed a significant relationship between 439 target genes and
AFD traits among the 1134 functional variants. Specifically, 305 target
genes of 900 functional variants were associated to fat deposition.
This finding is supported by the positive correlations observed in the
blue module, which exhibited a strong positive correlation with AFW
(r =0.90, p = 4e −04) and AFP (r =0.87, p = 1e −04), and in the tur-
quoise module, which showed a similarly strong positive correlation
with AFW (r =0.98, p = 8e −07) and AFP (r =0.99, p = 1e −07) (Fig. 4c).
Conversely, another set of 134 target genes of 518 functional variants
appeared to inhibit fat deposition. This observation was supported by
the negative correlations in the brown module with AFW (r = −0.64,
p =0.01) and AFP (r = −0.65, p = 0.01) and in the yellow module with
AFW (r = −0.53, p =0.04) and AFP (r = −0.54, p =0.04) (Fig. 4c). Nota-
bly, there is an overlap of 284 variants between the two sets, resulting
in a total of 1134 unique variants (900 + 518 - 284) regulating the 439

Fig. 1 | Genomic analysis identifying candidate variants for fat deposition in
broiler chicken lines. a Comparative visualization of fat (FL) and lean (LL) lines,
highlighting the marked difference in abdominal fat tissue. b Graphical repre-
sentation of bodyweight at 7 weeks of age (BW7), abdominal fat weight (AFW), and
abdominal fat percentage (AFP = AFW/BW7) in the FL and LL groups. Data were
shown as the mean± SD, n = 160 (FL), 170 (LL), biologically independent animals.
Statistical analysis was performed using anunpaired two-tailed Student’s t-test. The
fold differences observed were as follows: BW7 in FL relative to LL is 1.04-fold
(p <0.0001); AFW is 7.83-fold (p <0.0001); and AFP shows a 7.51-fold difference
(p <0.0001). c Circos plot displaying the distribution characteristics of genomic
variants, including SNPs and InDels, across the whole genome. d Population
structure analysis at K = 2, illustrating distinct genetic clusters.
e Three–dimensional principal component analysis (PCA) plot. f Analysis of linkage

disequilibrium (LD) decay distance, quantifiedbyR2 values.gGenome–wide FST bar
plot, with a red dashed line indicating the cutoff threshold (FST > 0.2), highlighting
regions of high genetic differentiation. h Genome–wide θπ ratio bar plot. The red
dashed line indicates the cutoff thresholds for log2 (θπ ratios) > 0.3 or < −0.3,
identifying areas under selection or with high genetic variation. i Scatter plot
showing 2301 selected regions associated with abdominal fat deposition AFD traits
identified through joint FST and θπ ratios. j Venn diagram illustrating the overlap
between the 2301 adipose–related selected regions and known adipose–related
QTLs from theChickenQTLdb.kManhattanplot highlighting significant changes in
allele frequency (AF) between the FL and LL groups, with regions under selection
marked. l Pie chart categorizing the 311,947 candidate variants linked to AFD traits.
Source data are provided as a Source Data file.
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genes associated with AFD traits. Additionally, 61 target genes of 35
functional variants, encompassing 304variant–gene interactions,were
identified within the grey module and were not associated with AFD
traits.

In total, our analysis successfully highlighted 439 significant
adipose–related target genes influenced by 1134 functional variants,

encompassing 2255 variant–gene interactions (Fig. 4d). GeneOntology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses further confirmed that these genes strongly correlated
with lipidmetabolism–relatedpathways, primarily signal transduction,
metabolic processes, and cell growth and death (Fig. 4e, f and Sup-
plementary Fig. 5d–f).
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Functional characterization of variant–gene interactions in
relation to fat deposition
In this study, we constructed an integrated framework, as described
above, that combines genomic, epigenomic, 3D genomic, and tran-
scriptomic data to unravel the mechanisms of transcriptional regula-
tion involved in the modulation of AFD traits by functional variants;
this framework is termed Integrative Multiomics for Variant–Gene
Interactions (IMVGI). This holistic approach allowed a systematic
analysis of functional variants and their impact on transcriptional
regulatory mechanisms associated with AFD traits. (Fig. 5a). Using
IMVGI, we identified 2255 adipose–related variant–gene interactions,
including 1134 functional variants (90.48% SNPs and 9.52% InDels) and
439 target genes. These functional variants were predominantly loca-
lized in enhancer–associated regions (45.67%) and CTCF–associated
regions (40.06%) (Fig. 5b and Supplementary Data 1–3). On average,
each functional variant was predicted to regulate 1.94 target genes,
whereas each target gene was influenced by 4.23 functional variants.
The average genomic distanceof these interactionswas approximately
201 kb, with about 71.00%of variants skipping over the nearest gene to
regulate their target genes through long-range interactions (Fig. 5c–f
and Supplementary Fig. 5a–c), highlighting the importance of inte-
grating 3D genomic interactions in this study.

To further characterize the 1134 identified functional variants
(IMVGI variants), from three aspects: epigenomic features, transcrip-
tion factor enrichment, andQTL regions associatedwith AFD traits, we
generated a control set of variants (non–IMVGI variants) using a web
tool vSampler with the allele frequencies, number of variants in LD, as
well as genomic distribution matched to IMVGI variants. Compared
with non–IMVGI variants, IMVGI variants were significantly enriched in
active chromatin regions marked by ATAC–seq, H3K27ac, H3K4me3,
H3K4me1, and CTCF (p < 0.0001, Fig. 5g). Notably, several transcrip-
tion factors associated with AFD traits, including members of the KLF,
TCF, CEBP, and SOX families, showed a preference for binding to
IMVGI variants (p < 0.01, Fig. 5h). Additionally, 73.02% of IMVGI var-
iants showed significant enrichment in QTL regions related to AFD
traits according to the Chicken QTLdb24. In contrast, only 10.05% of
non–IMVGI variants displayed similar enrichment in these QTLs
(Fig. 5i). Together, these observations suggested that IMVGI variants
play a central role in the transcriptional regulatory mechanisms asso-
ciated with AFD traits.

To evaluate the efficacy of the IMVGI model in predicting target
genes of functional variants, we compared it with other approaches
based on subsets of features such as positional distribution, regulatory
element activity, 3D loops and ChickenGTEx eQTL13 data. Our results
indicated that IMVGI can predictmore distal target genes and predicts
target genes that show greater mRNA expression differences between
the abdominal fat tissues of FL and LL broiler populations, which have
significantly different abdominal fat contents (Fig. 5j). These results
suggest that IMVGI is effective in integrating diverse genomic features

to accurately link precisely positioned variants with target genes
involved in AFD traits.

IMVGI variant rs734209466 as an allele–specific enhancer pro-
moting the transcription of IGFBP2 and IGFBP5
Of the 2255 variant–gene interactions identified by the IMVGI model,
we selected a representative interaction for further experimental
validation. Our IMVGImodel positioned both SNP rs16596562 (G > A)
and InDel rs734209466 (a 13–base pair InDel) within a predicted
active enhancer region enriched with high levels of H3K27ac and
H3K4me1 markers in the FL group (Fig. 6a, Supplementary Fig. 6).
Sanger sequencing further confirmed the presence of both
rs16596562 and rs734209466 in broilers (Fig. 6b). We then examined
the association between the genotypes of these two variants and fat
traits (AFW and AFP). The results indicated that individuals with the
rs16596562-AAand rs734209466-InIn genotypes hadhigher AFWand
AFP than those with the rs16596562–GG and rs734209466–DelDel
genotypes (p < 0.0001, Fig. 6c), suggesting that rs16596562–A and
rs734209466–In are among the potential functional alleles influen-
cing AFD traits. To detect their functional role, we employed
allele–specific luciferase reporter assays. The results showed that
both the rs16596562–A and rs734209466–In alleles notably
increased enhancer activity compared to the rs16596562–G and
rs734209466–Del alleles (p < 0.0001, Fig. 6d), thus functioning as
allele–specific enhancer.

Our IMVGI model further revealed that rs16596562 and
rs734209466 may directly interact with the promoter regions of the
distal target genes IGFBP2 and IGFBP5 through chromatin loops,
while potentially influencing the proximal target genes CXCR1 and
TNS1 through proximity effects, enhancing their transcriptional
activation (Fig. 6a and Supplementary Fig. 7). We then used RT‒qPCR
analysis to indicate significant differences in the mRNA expression
levels of the potential target genes CXCR1, TNS1, IGFBP2, and IGFBP5
between the adipose tissues of FL and LL (p < 0.05, Fig. 6e), sug-
gesting these genes as potential influencers of AFD traits. Luciferase
reporter assays further demonstrated that, in comparison to the
rs734209466–Del allele, the rs734209466–In allele significantly ele-
vated the promoter transcriptional activities of IGFBP2 and IGFBP5
(p < 0.0001, Fig. 6f, g), but did not affect the transcriptional activities
ofCXCR1 andTNS1 (p > 0.05, Fig. 6f, g). Conversely, the rs16596562–A
allele and the rs16596562–G allele did not enhance the transcrip-
tional activity of these target genes (p > 0.05, Fig. 6f, g). These results
suggested the role of rs734209466–In as an allele–specific enhancer,
particularly in the upregulation of IGFBP2 and IGFBP5 transcription.
Additionally, individuals carrying the rs734209466–In allele dis-
played elevated mRNA expression levels for IGFBP2 and IGFBP5 in
adipose tissue, further confirming the allele’s role as a specific
enhancer in the transcriptional promotion of IGFBP2 and IGFBP5
(p < 0.0001, Supplementary Fig. 8).

Fig. 2 | Epigenomic screening of functional variants influencing fat deposition.
a Circos plot showing the distribution and frequency of open chromatin regions
(OCRs) across chromosomes identified by ATAC–seq, with each ring representing
different sample data. b Volcano plot of 4028 differentially expressed OCRs
between FL and LL, with significance thresholds. c Graphical representation of the
size distribution of differential OCRs. d Enrichment analysis of ATAC–seq signals
near transcription start sites (TSSs). e Annotation of DOCRs with regulatory ele-
ments (REs) using ChIP–seq data of histone modifications. f Number of annotated
REs in DOCRs. g Comparative analysis of the activity signals of different REs. Violin
plots provide a density estimation of the data distribution, and box plots display
the median (central line), interquartile range (IQR, bounds), and whiskers repre-
senting theminimum andmaximum values. Sample sizes are n = 1264 (Low signal),
218 (Promoter), 1106 (Enhancer), 312 (Silencer), and 2337 (CTCF), biologically

independent samples. P values were obtained using one-way ANOVA followed by
Dunnett’s multiple comparisons test. h Circular plot depicting the identification of
superenhancers within DOCRs. i Circular plot showing the identification of super-
silencers within DOCRs. j, kComparative analysis of chromatinmarks in enhancers
and silencers, with box plots showing themedian, interquartile range, andwhiskers
representing the range of data, and violin plots providing a density estimation of
the data distribution. Data are plotted in box plots showing the median (central
line) and IQR (bounds) with whiskers extending to the minimum and maximum
values. n = 1106 (Typical enhancer), 280 (Super enhancer), 312 (Typical silencer)
and 41 (Super silencer), biologically independent samples. P values were obtained
using unpaired two-tailed Student’s t-test. l Bar and pie charts showing the dis-
tribution andproportion of functional variants across differentREs. Sourcedata are
provided as a Source Data file.
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Mediation of differential allelic activity at rs734209466 by the
transcription Factor IRF4
Given the association of the rs734209466–In allele with increased
expression of IGFBP2 and IGFBP5, we hypothesized that
rs734209466–In is more prone to attracting enhancer–associated
transcription factors than is rs734209466–Del. To test this
hypothesis, electrophoretic mobility shift assay (EMSA)

experiments were conducted. The results revealed that
probes containing the biotin–labeled rs734209466–In allele
could successfully form complexes with nuclear extracts, in con-
trast to the biotin–labeled rs734209466–Del allele (Fig. 7a). These
findings suggested that sequences containing rs734209466–In
serve as regulatory elements by recruiting specific transcription
factors.
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Furthermore, our in–depth investigation into the transcription
factor binding sites at the rs734209466 locus using Homer28 and
AnimalTFDB429 revealed a specific IRF4 binding site on the
rs734209466–In allele (Fig. 7b). Illuminating this interaction, luciferase
reporter gene analysis revealed that overexpression of IRF4 sig-
nificantly increased the luciferase activity of the enhancer carrying the
rs734209466–In allele compared to the control group (cells trans-
fected with the pCMV–HA empty vector) (p <0.0001, Fig. 7c, d).
However, there was no significant change in activity of the enhancer
containing the rs734209466–Del allele (p >0.05, Fig. 7c, d). To eluci-
datewhether IRF4directly interacts with the rs734209466–In allele, we
performed a supershift EMSA. The results showed that the
biotin–labeled rs734209466–In probe formed complexes with
IRF4–HA nuclear extracts, and a supershift band appeared upon the
addition of anti–HA (Fig. 7e). In conclusion, our results confirmed that
IRF4 candirectly bind to and regulate enhancer activity associatedwith
the rs734209466–In allele.

Since rs734209466 can directly affect the transcription of the
target genes IGFBP2 and IGFBP5, we speculate that if a transcription
factor is essential for rs734209466–related enhancer binding, its
upregulation will promote the expression of the target genes IGFBP2
and IGFBP5. The RT‒qPCR results showed that compared with those in
the control group (pCMV-HA), the mRNA expression levels of the
target genes IGFBP2 and IGFBP5 in the IRF4–overexpressing group
(pCMV-HA-IRF4) were significantly greater (p < 0.0001, Fig. 7f).

In summary, thesefindings suggested that the transcription factor
IRF4 likely plays a pivotal role in controlling enhancer activity in
regions centered on rs734209466. The rs734209466–In allele pro-
motes increased expression of the target genes IGFBP2 and IGFBP5 by
IRF4 binding.

IGFBP2 and IGFBP5 influence fat deposition by promoting pre-
adipocyte proliferation and differentiation
We established that the rs734209466–In allele, which is associated
with an increase in AFD traits, can increase enhancer activity by the
binding of IRF4 transcription factor, thereby promoting the expression
of the target genes IGFBP2 and IGFBP5. Consequently, we were inter-
ested in determiningwhether alterations in the expression levels of the
target genes IGFBP2 and IGFBP5 could influence cell phenotypes rela-
ted to AFD traits. Initially, we analyzed the effects of silencing or
overexpressing IGFBP2 and IGFBP5 on the proliferation of chicken
preadipocytes. The increased proliferation assay results showed that
IGFBP2 and IGFBP5 increased cell viability (p < 0.0001, Fig. 8a). RT‒
qPCR revealed that IGFBP2 and IGFBP5 increased the expression of the
preadipocyte proliferation marker genes PCNA and Ki67 (p < 0.0001,
Fig. 8b). EdU staining results demonstrated that IGFBP2 and IGFBP5
promoted DNA synthesis in cells (p ≤0.0004, Fig. 8c, d). Flow cyto-
metry revealed that IGFBP2 and IGFBP5 significantly reduced the pro-
portion of cells in the G1 phase and significantly increased the
proportion of cells in the S and G2 phases (p <0.0001, Fig. 8e, f and

Supplementary Fig. 9). These results suggested that IGFBP2 and IGFBP5
promote the proliferation of chicken preadipocytes.

Subsequently, we analyzed the effects of silencing or over-
expressing IGFBP2 and IGFBP5 on the differentiation of chicken pre-
adipocytes. Oil Red O staining and extraction colorimetry results
showed that IGFBP2 and IGFBP5 promote lipid droplet deposition in
preadipocytes (p <0.0001, Fig. 8g, h). The RT‒qPCR results showed
that IGFBP2 and IGFBP5 promote the expression of the preadipocyte
differentiation marker genes PPARG, CEBPA, and AP2 (p ≤0.0002,
Fig. 8i). These results suggested that IGFBP2 and IGFBP5 promote the
differentiation of chicken preadipocytes.

Discussion
Our research employs integrated 3D genomics with multi-omics
analysis to systematically explore the key genetic variations and
regulatory mechanisms influencing AFD traits in chickens. It com-
prehensively maps functional variations, regulatory elements,
transcription factors, and the 3D genome structure involved in
chicken fat traits, establishing complex genetic network structures
(Fig. 9). Using rs734209466 as a case study, we demonstrate how
non-coding variants impact the transcription of target genes by
altering the 3D conformation of chromatin, ultimately influencing
AFD traits in chickens (Fig. 9). These findings not only provide a
perspective on understanding the molecular mechanisms under-
lying AFD traits but also offer crucial molecular markers for chicken
genetic breeding.

The identification of functional variants and their target genes is a
major challenge for noncoding variants, as they do not directly encode
proteins30. Our IMVGI model, which integrates multiomics datasets
from genomics (WGS), epigenetics (ATAC–seq, ChIP–seq), 3D geno-
mics (Hi–C), and transcriptomics (RNA–seq), established a
variant–gene interaction network. This network reveals complex
genetic regulatory patterns pervasive throughout the genome. Tradi-
tionally, studies have concentrated on gene regulation involving
single–gene variants (one–to–one)31. However, emerging evidence
suggests that a single variant can regulate multiple target genes
(one–to–many)32, and a gene may be influenced by several variants
(many–to–one)33. The variant–gene interactions examined in this
study suggested that each variant potentially affects an average of 1.94
genes, and an average of 4.23 functional variants likely regulate each
gene. Furthermore, our functional elucidation of the IMVGI variant
rs734209466 revealed its location in a specific enhancer region,
enabling long–range regulation of IGFBP2 and IGFBP5 expression
through loop structures without affecting the nearby genes CXCR1 and
TNS1, thus influencing AFD traits. For instance, the enhancer–bearing
variant rs4810856 has been found to regulate the transcription of
PREX1, CSE1L, and STAU1 in colorectal cancer studies32. These results
support the presence of complex genetic regulatory patterns, indi-
cating that the phenomena of one–to–many and many–to–one inter-
actions are widespread throughout the genome.

Fig. 3 | 3D genomemapping of variant–gene interactions in fat and lean broiler
chicken lines. a Hi–C contact matrices at varying resolutions for chromosomes in
the FL and LL genomes, with darker shades indicating higher chromatin interaction
frequencies. b Three-dimensional average models of FL and LL chromatin struc-
tures, color-coded to represent different chromosomes at a 500 kb resolution,
illustrating average inter-chromosomal spatial relationships rather than specific
diploid configurations. c Box plots of Von Neumann entropy comparing chromatin
conformational looseness in the FL and LL genomes. Boxplot center line, median;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range and data
beyond that threshold indicated as outliers. P values were obtained using unpaired
two-tailed Student’s t-test, n = 40biologically independent samples. d Log–log plot
of contact frequency versus distance, highlighting structural differences between
the FL and LL genomic architectures. e Chromatin A/B compartment distribution

maps for specific chromosomal regions in the FL and LL genomes at 100kb reso-
lution. f Frequency charts of A/B compartment transitions, showing the proportion
of transitions between A/B compartments in the FL and LL genomes. g Aggregate
peak analysis (APA) of all topologically associating domains (TADs) within the FL
and LL genomes at 10 kb resolution. h Statistical summary of specific and shared
TAD boundaries, including counts and percentages. i APA for a comparative ana-
lysis of all chromatin loops within the FL and LL genomes at resolutions of 1, 5, 10,
and 25 kb. jDistribution charts summarizing the number and percentage of specific
and shared chromatin loops. k Schematic diagrams illustrating how functional
variants influence gene interactions through changes in proximal and distal RE
activity and in TAD and loop structures. l Table detailing 2559 variant–gene inter-
actions identified, categorized by interaction type, variant number, REs, and target
genes involved. Source data are provided as a Source Data file.
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Furthermore, the IMVGI model was used to explore the biological
mechanisms underlying these functional variants. Our results indicate
that key transcription factors involved in AFD traits, such as the KLF
family34, TCF family35, CEBP family36, and SOX family37, are significantly
enriched at IMVGI variant sites. This result suggests that these tran-
scription factors regulate the expression of target genes by directly
binding to IMVGI variant sites, thereby altering the activity of reg-
ulatory elements. For instance, studies have shown that transcription
factors canmodulate gene expression by binding to enhancer regions,

either facilitating or impeding the recruitment of RNA polymerase38.
Our experimental investigations using the IMVGI variant rs734209466
as a model further validated this mechanism. Motif analysis indicated
that the rs734209466–In allele possesses a binding site for IRF4,
whereas the rs734209466–Del allele lacks this binding site. IRF4 is a
transcription factor that has been reported to play a crucial role in
adipose deposition39. Our experimental results demonstrated that the
IRF4 transcription factor, by binding to the rs734209466–In allele,
increases the activity of the specific enhancer region, impacting the
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Encyclopedia ofGenes andGenomes (KEGG) pathway enrichment analysis of target
genes, providing insight into biological pathways. KEGG pathway enrichment
analysis was performed using a two-sided Fisher’s exact test. Multiple comparisons
were adjusted using the Benjamini-Hochberg (BH) method to control the false
discovery rate (FDR). Source data are provided as a Source Data file.
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expression of the target genes IGFBP2 and IGFBP5, which in turn
influence adipocyte proliferation and differentiation, thereby pro-
moting fat deposition. In summary, our results provide a clear
understanding of the specific molecular mechanisms through which
transcription factor–mediated variant–gene interactions influence the
expression of specific genes.

This study utilized the innovative IMVGI method to construct a
comprehensive genetic regulatory network map of functional variant
sites that regulate AFD traits. These regulatory maps highlighted the
significance of non-coding region variants in AFD traits and their key
roles in trait-related genes. Experimental validation confirmed the
functionality of the variant site rs734209466 as a specific enhancer,
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demonstrating its ability to interact with the transcription factor IRF4
and regulate the transcription of IGFBP2 and IGFBP5 over long dis-
tances through a loop structure. IGFBP2 and IGFBP5 were found to
stimulate the differentiation and proliferation of preadipocytes,
thereby influencing AFD traits. These findings not only offer valuable
targets for molecular breeding of AFD traits in chickens, but also
present a research framework for understanding the genetic regula-
tion mechanisms of important economic traits in agricultural animals.

Methods
Ethics
The Animal Ethics Committee of Northeast Agricultural University
granted approval for the experimental designs and procedures
(approval number: [NEAUEC20220228]). Rigorous measures were
undertaken to assure the well-being and humane handling of the
broiler chickens engaged in this study. The gatheringof specimens and
data was executed in conformity with the pertinent regulations and
directives on animal welfare and protection.

Experimental population and phenotypic measurements
The study involved 330 7–week–old roosters (FL = 160, LL = 170) from
the 19th generation of the NEAUHLF population. The chickens were
raised under identical environmental conditions, with the temperature
in the chicken coop maintained at 18–25 °C and humidity at 60–65%.
Free access to food andwater was provided throughout the study. The
feedwas a commercial corn‒soybean–based dietmeeting theNational
Research Council40 recommendations for broiler nutritional require-
ments. From hatching to 3 weeks of age, the chicks were fed a starter
diet (metabolizable energy [ME] 3000 kcal/kg; crude protein [CP]
210 g/kg), and from4weeks of age to slaughter, theywere fed a grower
diet (ME 3100 kcal/kg; CP 190 g/kg). At 7 weeks of age, just before
slaughter, the BW7 of the chickens was measured. All chickens were
slaughtered by cervical dislocation and jugular vein bleeding. TheAFW
was manually separated and weighed, and the AFP concentration was
calculated.

Genomic analysis
Whole–genome sequencing and genomic variant calling.
Whole–genome sequencing was carried out on 330 roosters (FL = 160,
LL = 170) from the NEAUHLF breed by Novogene (Beijing, China). This
process generated 150bp paired–end reads with an average sequen-
cing depth of 6.62× coverage per sample (Supplementary Data 4). We
assessed the quality of the base sequences using FastQC software
(version 0.11.9)41. Next, we processed and removed low–quality bases
and artifacts using Trim Galore software (version 0.6.7). High–quality
150 bp paired–end reads were aligned to the reference GRCg7b gen-
ome (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/016/699/485/
GCF_016699485.2_bGalGal1.mat.broiler.GRCg7b/, last accessed May
21, 2021) using BWA–MEM software (version 0.7.17)42 with default

parameters (Supplementary Data 5). The mapped reads were con-
verted to bamfiles and sorted using SAMtools software (version 1.12)43.
Duplicates were removed using the MarkDuplicates module in GATK
software (version 4.2.6.1)44. Genomic variants (SNPs and InDels) were
identified using the GATK HaplotypeCaller module, adhering to GATK
Best Practices45. Finally, ANNOVAR software (version 2020Jun7)46 was
used for annotation of genomic variant positions. Genomic variants
were categorized into noncoding and coding region variants based on
their positions in the reference genome and gene position information
for the reference genome.

Population structure analysis. To investigate the genetic relationship
between the FL and LL populations, PCA was conducted using PLINK
software (version 1.90)47. Additionally, the population structure of
these chicken populations was predicted using ADMIXTURE software
(version 1.20)48 as described by Shringarpure49. LD decay analysis was
performed using PopLDdecay software (version 3.41)50, setting a rea-
sonable extraction interval for candidate variants.

Selection signature analysis. The genome–wide distributions of the
FST values and θπ ratios for FL and LL were calculated using VCFtools
software (version 0.1.16)51, with a window size of 50 kb sliding in 10 kb
steps. The θπ ratios were log2–transformed. Windows with FST > 0.2
and |log2 (θπ ratio)| > 0.3 were identified as candidate adipose–related
selection regions11,52,53. The allele frequencies of genomic variants in
these regions were calculated separately for FL and LL using VCFtools
software. Genomic variants with a ΔAF ≥0.5 were identified as candi-
date variants associated with AFD traits11,52,53.

Epigenomic analysis
ATAC–seq sequencing. Abdominal fat tissue samples from six
NEAUHLF individuals (three from each line) were subjected to
ATAC–seq by Frasergen (Wuhan, China). The ATAC–seq data analysis
followed the pipeline from the ENCODE project (https://github.com/
kundajelab/atac_dnase_pipelines)54. Approximately 28.89Gb of raw
sequence data per sample were obtained, with base sequence quality
assessed using FastQC software. Low–quality bases and artifacts were
removed using Trim Galore software. High–quality 150bp paired–end
reads were aligned to the GRCg7b reference genome using BWA–MEM
software. PCR duplicates and mitochondrial data were removed using
SAMtools software. BAM files from three biological replicates were
independently used for downstream analysis. Filtered BAM files were
converted to bedpe format and then to tagAlign files using BEDTools
software (version 2.30.0)55. Peaks were called using MACS3 software
(version 3.0.0b1)56 with specified parameters, and differential analysis
of peaks between groups was conducted using the edgeR package
(version 4.0.2)57 to identify DOCRs related to AFD traits. The detailed
ATAC–seq data can be found in Supplementary Fig. 10 and 11 and
Supplementary Tables 2 and 3.

Fig. 5 | Functional analysis of variant–gene interactions in relation to AFD
traits. a Flowchart model for Integrative Multi–omics for Variant–Gene Interac-
tions (IMVGI) identification of functional variants and target genes related to AFD
traits.b Functional annotations for IMVGI variants. c Cumulative fractions of target
genes per IMVGI variant (mean = 1.94).dCumulative fractions of IMVGI variants per
target gene (mean= 4.23). e Cumulative fractions of genomic distances for identi-
fied variant–gene connections (mean = 201 kb). f The bar chart indicates the
number of genes skippedby variants before interactingwith their target genes. The
x-axis represents the number of genes skipped, and the y-axis represents the
number of variants. g Comparative analysis of the enrichment of non–IMVGI and
IMVGI variants in active chromatin regions, including ATAC–seq, H3K27ac,
H3K4me3, H3K4me1, and CTCF markers. Violin plots provide a density estimation
of the data distribution, and box plots display the median (central line), inter-
quartile range (IQR, bounds), and whiskers representing the minimum and

maximum values. Sample sizes are n = 1134 biologically independent samples
(unpaired two-tailed Student’s t-test). h Heatmaps showing transcription factor
binding preferences for non–IMVGI vs. IMVGI variants, with a greater binding
preferenceof IMVGI variants for transcription factors involved inAFD traits, suchas
members of the KLF, TCF, CEBP, and SOX families. n = 1134 biologically indepen-
dent samples. P valueswere calculated using hypergeometric tests and adjusted for
multiple comparisons with the Benjamini-Hochberg method. i Bar charts compar-
ing the enrichment of non–IMVGI vs. IMVGI variants in adipose–related QTLs with
data from the Chicken QTLdb. j Scatter plot illustrating the relationship between
genomic distance and the impact of variant–gene interactions on gene expression,
highlighting the predictive power of the IMVGI model for genes with differential
mRNA expression in abdominal fat tissue. Source data are provided as a Source
Data file.
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ChIP–seq data analysis. Raw ChIP–seq data58 for histone modifica-
tions (H3K27ac, H3K27me3, H3K4me1, H3K4me3) and CTCF, along
with input controls, from chicken adipose tissue were obtained from
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/, accession number GSE158430). The raw data were
remapped to the GRCg7b genome using BWA–MEM software. BAM
file processing was consistent with the ATAC–seq sequencing

method described above. We merged BAM files from two biological
replicates for downstream analysis. MACS3 software was used for
peak calling, with parameters set for both broad and narrow peaks,
following the ENCODE project pipeline (https://github.com/
ENCODE-DCC/chip-seq-pipeline)59. The detailed ChIP–seq data can
be found in Supplementary Fig. 12.
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Fig. 6 | Role of the IMVGI variant rs734209466 in enhancing IGFBP2 and IGFBP5
transcription. a Integrative Genomics Viewer (IGV) plot illustrating the regulatory
role of candidate functional variants in AFD traits, as identified by IMVGI analysis.
b Sanger sequencing validation results displaying the sequencing curves for SNP
rs16596562 and InDel rs734209466, confirming the presence of these variants in
the selected broiler chicken population. c Violin plot depicting phenotypic differ-
ences in AFD traits (AFW and AFP) among 330 NEAUHLF individuals with various
genotypes (n = 136 for rs16596562-GG, n = 86 for rs16596562-GA, n = 108 for
rs16596562-AA, n = 131 for rs734209466-DelDel, n = 87 for rs734209466-InDel and
n = 112 for rs734209466-InIn, biologically independent animals). P values were
obtained using one-way ANOVA followed by Tukey’s multiple comparisons test.

d Luciferase–based enhancer assay results demonstrating the enhancer activity of
different alleles in the chicken preadipocyte cell line (ICP2). e RT‒qPCR assessment
of themRNA expression levels of candidate target genes of IMVGI variants in the FL
and LL of abdominal adipose tissue. P values were obtained using unpaired two-
tailed Student’s t-test. f, g Luciferase–based promoter assays were used to evaluate
the transcriptional effects of enhancer alleles of the two IMVGI variants on the
promoter regions of their target genes.d, f,g P valueswere obtainedusing one-way
ANOVA followed by Dunnett’s multiple comparisons test. d, e, f, g Data were pre-
sented as mean± SD, n = 9 biologically independent samples. Source data are
provided as a Source Data file.
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Annotation of DOCR regions. DOCRs were classified and annotated
using BEDTools software. Integrating ChIP–seq data for H3K27ac,
H3K27me3, H3K4me1, H3K4me3, and CTCF, DOCRs were categorized
into different regulatory elements: promoters (TSS −4 kb/+2 kb,
H3K4me3, H3K27ac), enhancers (H3K4me1, H3K27ac), silencers
(H3K27me3), and CTCF sites. We employed the ROSE algorithm25 to
annotate SEs and SSs within DOCRs. SEs were identified by stitching

enhancer–like regions with high ATAC–seq and H3K27ac
enrichment60, and SSs were annotated similarly, focusing on dense
ATAC–seq and H3K27me3 modification regions26.

Three–dimensional genome
Hi–C. We used abdominal fat tissues from the same six NEAUHLF
individuals (three from each line) selected for ATAC–seq analysis.
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This sequencing was conducted by Frasergen (Wuhan, China),
yielding an average sequencing depth of 231.99× per sample.
To construct a more comprehensive Hi–C interaction matrix, we
amalgamated the Hi–C data from three biological replicates of each
line. The data were processed using the Juicer pipeline (https://
github.com/aidenlab/juicer/)61. Contact matrices at varying resolu-
tions (1, 5, 10, 25, 100, and 500 kb) were normalized using the KR

algorithm61. The detailed Hi–C sequencing data can be found in
Supplementary Fig. 13, Supplementary Tables 1 and 4 and Supple-
mentary Data 6.

Chromatin3Dmodeling. The 3Dgenomestructurewas reconstructed
from interchromosomal contacts (at 500 kb resolution) using the
Python package miniMDS software (version 2018-09-27)62. PyMOL

Fig. 8 | Effects of silencing and overexpression of IGFBP2 and IGFBP5 on fat
deposition: preadipocyte proliferation and differentiation. a Cell viability was
analyzed using the CCK–8 assay. P values were obtained using two-way ANOVA
followed by Dunnett’s multiple comparisons test, n = 6 biologically independent
samples. b The mRNA levels of the preadipocyte proliferation markers PCNA and
Ki67 were assessed by RT‒qPCR (n = 6 biologically independent samples).
c, d Assessment of DNA synthesis in cells using EdU staining (scale bars: 500 μm,
n = 3 biologically independent samples). e, f The distribution of the cell cycle was

assessed by flow cytometry (n = 3 biologically independent samples).
g,hMeasurement of preadipocyte lipid droplet accumulation byOil RedO staining
and spectrophotometric quantification (scale bars: 500 μm, n = 5 biologically
independent samples). i The mRNA levels of the preadipocyte differentiation
markers PPARG, CEBPA, and AP2 were assessed by RT‒qPCR (n = 6 biologically
independent samples).b, d, f, h, iData were shown as themean± SD, p values were
obtained using one-way ANOVA followed by Dunnett’s multiple comparisons test.
Source data are provided as a Source Data file.

Fig. 9 | Schematic overview of the study. This study successfully established the
comprehensive chromatin 3D regulatory network for AFD traits in chickens, inte-
grating WGS, ATAC-seq, histone ChIP-seq, Hi-C, and RNA-seq. The network ela-
borates on the interactions among regulatory elements, super-regulatory
elements, transcription factors, and gene transcription maps. Further, experi-
mental validation of the key variant rs734209466 confirmed that it enhances

enhancer activity by interacting with IRF4 and orchestrates the long-range reg-
ulation of the IGFBP2 and IGFBP5 genes through loop structures. This modulation
promotes adipocyte proliferation and differentiation, thereby intensifying AFD
traits. Importantly, this variant does not affect the expression of adjacent genes
CXCR1 and TNS1, demonstrating the specificity and precision of the regulatory
network.
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software (version 2.5.0)63 facilitated the visualization of these
structures.

A/B compartment identification. We employed a PCA–based
approach64 for delineating the A and B compartments. Initially,
observed/expected matrices were computed for each chromosome at
100 kb resolution using normalized and ICE–corrected interaction
matrices. Subsequent steps included the computation of Pearson
correlation and covariance matrices based on these matrices. PCA
eigenvectors were then derived from the covariance matrices, using
the first principal component (PC1) to assign the A and B compart-
ments. This assignment was based on the direction of the eigenvalues,
manually adjusted for gene and GC density, using hicPCA in HiCEx-
plorer software (version 3.6.0)65,66.

TAD identification. TADs and boundaries were identified at 10 kb
resolution using hicFindTADs in HiCExplorer software65,66. To ensure
the conservation of TAD boundaries between the FL and LL groups, we
considered boundaries overlapping or within a distance less than one
bin size (10 kb) to be conserved67.

Chromatin loop identification. Chromatin loopswere identified using
hicDetectLoops in HiCExplorer software65,66. Given the extensive loops
observable in Hi–C contact maps, often spanning several megabases,
we called loops at various resolutions (1, 5, 10, 25 kb). These loops,
identified across all resolutions, were then consolidated within a 25 kb
range using hicMergeLoops in HiCExplorer software. For loop con-
servation between the FL and LL groups, loops with anchor genomic
intervals overlapping or within less than one bin size (25 kb) were
considered conserved67.

Transcriptome
In this part of the study, abdominal fat tissues were collected from ten
selected chickens (five from each line, FL and LL) from the initial
330–chicken cohort. The selection was random, ensuring representa-
tiveness. These samples were subjected to RNA–seq by Novogene
(Beijing, China). Alignment to the GRCg7b chicken genome was
accomplished using HISAT2 software (version 2.0.1)68. BAM files from
five biological replicates were independently used for downstream
analysis. Read counts were obtained using FeatureCounts software
(version 2.0.1)69, and gene expression was assessed based on TPM
values. WGCNA was conducted using the WGCNA R package (version
1.69)70 to identify gene networks and pathways pertinent to adiposity.
The detailed RNA–seq data can be found in Supplementary Fig. 14 and
Supplementary Tables 5 and 6.

Identificationof target genes associatedwith functional variants
To identify target genes regulated by functional variants, we con-
ducted a comprehensive analysis integrating epigenomic genomic
annotations and 3D genome structure. Themethodology involved the
following steps:

Mapping variants to promoter regions and proximal REs. We used
BEDTools software to intersect functional variants with the genomic
coordinates of promoters and nearby regulatory elements. Variants
located within promoter regions (TSS −4 kb/+2 kb) or within 10 kb of
other REs (enhancers and silencers) were associated with their prox-
imal genes based on genomic proximity.

Linking variants in REs to distal target genes via chromatin inter-
actions. For variants within REs that might affect distal genes, we uti-
lized chromatin interaction data to capture long-range regulatory
relationships. Using PGLTOOLS software (version 3.0.0)71, we mapped
these REs to Hi-C interaction anchor points, identifying regulatory
elements overlapping with these anchors. We then identified target

genes by determining whether the interacting anchor points mapped
to promoter regions of protein-coding genes in the GRCg7b genome
assembly (TSS −4 kb/+2 kb).

Identifying variants affecting TAD structures at CTCF binding sites.
We investigated functional variants located at CTCF binding sites
coinciding with TAD boundaries. Using PGLTOOLS software, we
identified CTCF binding sites overlapping with TAD boundaries
defined from our Hi-C data. Variants within these CTCF sites were
considered potential modifiers of TAD structures. To identify target
genes affected by changes in TAD structures, we analyzed genes
located within the TADs altered by these variants, as modifications in
TAD boundaries can influence gene regulation within these domains.

Assessing variants influencing chromatin loop structures at CTCF
binding sites. We also analyzed functional variants at CTCF binding
sites located at loop anchor points, using PGLTOOLS software. Var-
iants at these sites may disrupt or alter chromatin loop formation,
impacting the regulation of distal genes. Wemapped these variants to
loop anchor points and identified target genes by determining whe-
ther the interacting anchor points overlapped with gene promoters.

Quantifying variant–gene interactions. For each variant, we calcu-
lated the number of gene promoter regions interacting with that var-
iant through chromatin loops or altered chromatin structures.
Conversely, for each gene promoter region, we quantified the number
of independent interactions involving at least one functional variant.
This analysis enabled us to construct a comprehensive network of
potential regulatory interactions mediated by chromatin architecture
modifications.

Functional enrichment analysis
The GO term and KEGG pathway analyses were performed using the
DAVID database (http://david.abcc.ncifcrf.gov/, last accessed on June
5, 2022)72. Statistical significance was set at a p value < 0.05. GSEA was
conducted via the omicstudio online platform (https://www.
omicstudio.cn/tool/123, last accessed on June 5, 2022)73.

Adipocyte culture
The immortalized chicken preadipocyte (ICP2) cell line was previously
developed inour laboratory74. All cell lineswere authenticated through
nucleic acid sequence analysis to confirm their identities. They were
tested negative for Mycoplasma using the Myco-Blue Mycoplasma
Detector Kit (Vazyme, D101-01). ICP2 cells were cultured in DMEM/F12
medium containing 10% serum and 1% penicillin-streptomycin in an
incubator at 37 °C with 5% CO2. When the cells reached approximately
90% confluence, theywerewashedwith PBS buffer and passaged using
trypsin (Sigma, MO, USA).

For the induction of differentiation into mature adipocytes, cells
were plated in 12-well culture plates. Once the cells reached approxi-
mately 50% confluence, the basal medium was replaced with an
induction medium containing oleic acid (300μM). The oleic acid
induction medium was refreshed daily during the induction process.

Synthesis of plasmids and siRNA
The eukaryotic gene expression vector pCMV-HA was preserved
in our laboratory. The expression plasmids for IGFBP2, IGFBP5,
and IRF4 were constructed by inserting the respective cDNA
fragments into the pCMV-HA vector. The primer sequences used
for constructing the overexpression vectors were synthesized by
RiboBio (Guangzhou, China), with detailed information provided
in Supplementary Data 7.

The luciferase reporter gene vector pGL3-Promoter was pre-
served in our laboratory. Enhancer sequences surrounding the
rs16596562 and rs734209466 sites were downloaded from the NCBI
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database. Promoter sequences of CXCR1, TNS1, IGFBP2, and IGFBP5
were similarly downloaded from the NCBI database. These sequences
were inserted upstream of the SV40 promoter in the pGL3-Promoter
vector.Mutant constructs were generated by site-specificmutagenesis
at the rs16596562 (G >A) and the rs734209466 (Del > In), and were
cloned using the same strategy as for the wild-type sequences. The
promoter sequences of CXCR1, TNS1, IGFBP2, and IGFBP5were inserted
downstreamof the SV40promoter. Theprimer sequences for thedual-
luciferase reporter gene assay were synthesized by RiboBio (Guangz-
hou, China), with detailed information provided in Supplemen-
tary Data 8.

The sequences of small interfering RNA (siRNA) oligonucleotides
targeting IGFBP2, IGFBP5, and the negative control siRNA are listed by
RiboBio (Guangzhou, China), with detailed information provided in
Supplementary Table 7.

Cell transfection
Transfection of cells was performed according to the manufacturer’s
protocol for Lipofectamine 3000 reagent (Invitrogen, CA, USA).

Oil red O staining and quantification
The cells were washed three times with PBS and fixed in 4% for-
maldehyde for 30minutes. Subsequently, the cells were stained with
60% oil red O solution (Sigma,MO, USA) for 15minutes. After staining,
the cells were washed, and 60% isopropanol was added for lipid
extraction. The lipid droplets were then visualized under a micro-
scope. For quantification, oil red Owas dissolved in 100% isopropanol,
and the absorbance was measured at 510 nm. The accumulation of
lipid droplets was normalized to the protein content, which was
measured using a BCA Protein Quantitative Analysis Kit (Beyotime,
Nanjing, China).

Dual luciferase reporter assay
For functional validation, we utilized a dual luciferase reporter assay
system (Promega, WI, USA) following the manufacturer’s protocol.
Constructs with different allelic sequences were cloned and inserted
into the pGL3–promoter vector (Promega, WI, USA). Cells (seeded in
24–well plates) were transfectedwith Lipofectamine 3000 (Invitrogen,
CA, USA), after which firefly and Renilla luciferase activity was mea-
sured after 24hours.

Electrophoretic mobility shift assay (EMSA)
Single-stranded complementary oligonucleotide sequences contain-
ing variant rs734209466 alleles were synthesized by RiboBio
(Guangzhou, China) and labeled with biotin at the 5’ end (Supple-
mentaryTable8). Nuclear extracts from ICP2 cells werepreparedusing
the Nuclear and Cytoplasmic Protein Extraction Kit (Thermo Fisher
Scientific, USA). Electrophoretic mobility shift assays (EMSA) were
conductedwith the EMSA/Gel-Shift Kit (ThermoFisher Scientific, USA)
according to the manufacturer’s instructions. For the competitive
binding assay, unlabeled probes were added to the reaction mixtures
at 10-fold or 100-fold excess relative to the labeled probes and incu-
bated for 20minutes prior to the addition of the labeled probes. For
super-shift EMSA, 1μg, 2μg, and 4μg of anti-HA antibody (Abcam; Cat:
ab9110) were added to the reaction mixtures and incubated for
20minutes before the addition of labeled probes. As a control for non-
specific binding, 2μg of normal rabbit IgG (Cell Signaling Technology;
Cat: 2729S) was added to parallel reaction mixtures under the same
conditions. The binding products were detected using a streptavidin-
horseradish peroxidase conjugate in accordance with the SuperSignal
West Femto Trial Kit (Thermo Fisher Scientific, USA).

Real–time quantitative PCR (RT‒qPCR)
RNAwasextractedwithTRIzol reagent (Takara,Dalian, China).Reverse
transcription was performed with the Evo M–MLV Mix Kit with gDNA

Clean for qPCR (Accurate Biology, Hunan, China). RT‒qPCR was con-
ducted on a QuantStudio 5 system (Applied Biosystems) using a SYBR
Green Premix Pro Taq HS qPCR Kit (Accurate Biology, Hunan, China).
TBP was used as an internal control. The primers used are listed in
Supplementary Table 9.

Cell proliferation assays
Cell proliferation was assessed using a Cell Counting Kit–8
(CCK–8, Dojindo, Kumamoto, Japan) and an EdU incorporation
assay (RiboBio, Guangzhou, China). For the CCK-8 assay, cells
were seeded into 96-well plates at a density of 1 × 104 cells per
well in 100 μL of culture medium, with three replicates for each
transfection group. At designated time points post-transfection,
10 μL of CCK-8 reagent was added to each well and incubated at
37 °C for 2 hours. Absorbance at 450 nm was measured using a
microplate reader (Molecular Devices, Sunnyvale, CA, USA). For
the EdU incorporation assay, cells were plated in 24-well plates at
a density of 5 × 104 cells per well in 500 μL of culture medium,
with three replicates for each transfection group. Cell staining
was conducted using the EdU Cell Proliferation Detection Kit
following the manufacturer’s protocol. Stained cells were
observed under a fluorescence microscope (Leica, Wetzlar, Ger-
many). Three fields were randomly selected from each well, and
the percentage of EdU-positive cells was calculated using ImageJ
1.46 R software (NIH, Bethesda, MD, USA). The percentage of EdU-
positive cells was determined by the ratio of red fluorescent cells
to blue fluorescent cells, multiplied by 100%.

Cell cycle analysis
Cell cycle analysis was performed using a Cell Cycle Staining Kit
(Multisciences, Hangzhou, China). Cells cultured in 12-well plates
were harvested and centrifuged at 800 g for 5minutes. After
discarding the supernatant, the cells were washed once with cold
phosphate-buffered saline (PBS). The cells were then resus-
pended in 1 mL of reagent A from the kit and 10 μL of reagent B,
followed by vortexing for 10 seconds and incubation at room
temperature for 30minutes. The cell suspension was subse-
quently subjected to flow cytometry analysis using a FACS
Canto™ II system (BD BioSciences, San Jose, CA, USA).

Statistical analysis
Statistical analysis was performed using R 4.0.3 and GraphPad 8.0.2.
Data normality was assessed using the Anderson-Darling test. For
normally distributed data, significant differences were determined
using Student’s t-test for pairwise comparisons, or by analysis of var-
iance (ANOVA) for three or more groups, followed by Tukey or Dun-
nett’s multiple comparisons test for further analysis. For non-normally
distributed data, the Mann–Whitney U test was used for pairwise
comparisons, while the Kruskal–Wallis test was employed for three or
more groups, followed by Dunn’s post hoc test for multiple compar-
isons. P <0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ATAC–seq and Hi–C data generated in this study have been
deposited in the GEO database under accession numbers GSE255760
and GSE260559, respectively. Additionally, the WGS and RNA–Seq
data used in this study are available in the NCBI BioProject database
under accession numbers PRJNA353057 and PRJNA354990. The
ChIP–seq data utilized in this study were obtained from the GEO
database under accession number GSE158430. Source data are pro-
vided with this paper.
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Code availability
All the code used for data analysis is available at https://github.com/
shenlinyong/IMVGI. All codes have been deposited in Zenodo at:
https://doi.org/10.5281/zenodo.1390253875.
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