
Journal of Integrative Agriculture  2022, 21(7): 2065–2075

RESEARCH  ARTICLE

Available online at www.sciencedirect.com

ScienceDirect

Integration of genome-wide association study and selection 
signatures reveals genetic determinants for skeletal muscle 
production traits in an F2 chicken population
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Abstract 
Improving the production of broiler chicken meat has been a goal of broiler breeding programs worldwide for many 
years.  However, the genetic architectures of skeletal muscle production traits in chickens have not yet been fully 
elucidated.  In the present study, a total of 519 F2 birds, derived from a cross of Arbor Acres broiler and Baier layer, 
were re-sequenced (26 F0 individuals were re-sequenced at a 10-fold depth; 519 F2 individuals were re-sequenced 
at a 3-fold depth) and the coupling of genome-wide association study (GWAS) and selection signatures (FST (fixation 
index) and θπ (nucleotide diversity)) was carried out to pinpoint the associated loci and genes that contribute to 
pectoral muscle weight (PMW) and thigh muscle weight (TMW).  A total of 7 890 258 single nucleotide polymorphisms 
(SNPs) remained to be analyzed after quality control and imputation.  The integration of GWAS and selection 
signature analyses revealed that genetic determinants responsible for skeletal muscle production traits were mainly 
localized on chromosomes 1 (168.95–172.43 Mb) and 4 (74.37–75.23 Mb).  A total of 17 positional candidate genes 
(PCGs) (LRCH1, CDADC1, CAB39L, LOC112531568, LOC112531569, FAM124A, FOXO1, NBEA, GPALPP1, 
RUBCNL, ARL11, KPNA3, LHFP, GBA3, LOC112532426, KCNIP4, and SLIT2) were identified in these regions.  
In particular, KPNA3 and FOXO1 were the most promising candidates for meat production in chickens.  These 
findings will help enhance our understanding of the genetic architecture of chicken muscle production traits, and the 
significant SNPs identified could be promising candidates for integration into practical breeding programs such as 
genome-wide selection (GS) to improve the meat yield of chickens.
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1. Introduction

With the improvement of living standards and the 
enhancement of healthy consumption consciousness, 
consumers prefer meat products with high protein, low 
fat and low cholesterol contents.  Chicken products with 
rich nutrients and lower calories meet people’s demands 
(Mir et al. 2017), which has led to a noticeable increase 
in poultry consumption among all animal products.  
Therefore, it has become the goal of producers and 
scientists to obtain commercial broilers with rapid growth 
and high feed efficiency (Pampouille et al. 2018).  Over 
the past few decades, the body weight of commercial 
broilers has been dramatically increased, and the time to 
market has been shortened by half (Petracci and Cavani 
2012).  These developments have led to a significant 
increase in chicken meat production, especially breast 
muscle and drumstick meat yields, which represent the 
most valuable portion for most product operators and 
consumers (Baldi et al. 2019).

In  the recent  two decades,  a  number  o f  the 
quantitative trait loci (QTL) affecting chicken meat 
production traits have been identified based on the 
candidate gene approach, marker-QTL linkage analysis, 
and SNP-chip based genome wide association study 
(GWAS).  Le Mignon et al. (2009) confirmed one QTL at 
the distal end of Gallus gallus chromosomes (GGA) 5, 
which influences breast muscle (BM) weight in chickens, 
by performing multiple-trait and multi-QTL analyses of 
the whole available data set from two F2 populations.  
Ankra-Badu et al. (2010) found several sex-specific 
and sex-antagonistic QTL related to breast meat and 
drumstick meat yield.  Sato et al. (2012) confirmed that 
polymorphisms in the Insulin-like growth factor-1 (IGF1) 
promoter region were significantly associated with 
breast muscle weight (BMW) in a chicken F2 population.  
Myostatin has been widely reported to be closely related 
to the growth and muscle development of chickens 
(Zhang et al. 2015; Liu L X et al. 2016; Dou et al. 2018).  
Chen et al. (2015) identified FOXO3, as a candidate 
gene affecting the growth of chest and leg muscles in 
chickens through RNA-sequencing.  Godoy et al. (2015) 
found SNPs and indels associated with breast muscle 
deposition in a QTL region on chicken chromosome 2 by 
low-density genome-wide sequencing.  Xie et al. (2012) 
identified a narrow region on chromosome 1 (173.5–

175 Mb) that is strongly associated with chicken breast 
muscle weight (BMW) and leg muscle weight (LMW) 
using a 60K SNP Illumina iSelect chicken array based 
on GWAS in an F2 chicken population.  

Scientists have made significant progress in using 
GWAS to identify the genetic association between 
genotype and phenotype over the past decade.  
However, it is sti l l  a major challenge to fine-map 
the markers and genes responsible for the potential 
phenotypic variations of quantitative traits in livestock.  
Generally speaking, the genomic region screened by 
GWAS still includes many genes due to high linkage 
disequilibrium (LD) between markers and QTL.  In this 
case, it is necessary to combine GWAS based on whole-
genome resequencing with other strategies, such as 
selective signature and multi-omics methods, to improve 
the efficiency and accuracy of the gene mapping (Zhou 
et al. 2018).  

Domesticated animal species have undergone 
intensive selection due to breeding and domestication, 
which has given rise to various phenotypes when 
compared with their wild counterparts (Liu Z et al. 2016).  
In the process of long-term artificial or natural selection, 
some traits of the animal population change in a specific 
direction, leaving obvious selection characteristics in the 
genome, which is the signature of selection (Grossman 
et al. 2010; Mariadassou et al. 2020).  FST (fixation 
index) and θπ (nucleotide diversity) are commonly used 
to reflect the genomic changes caused by selection 
from different angles, so as to reveal the domestication 
history in the process of animal breeding and better 
reveal the underlying genetic basis for the formation of 
economically important traits.  

Pectoral muscle weight (PMW) and thigh muscle 
weight (TMW) are important commercial traits.  However, 
the genetic architectures underlying these complex traits 
have yet to be uncovered.  We hypothesized that some 
variants and genes would be associated with skeletal 
muscles and these traits would leave similarly selected 
footprints on the genome because of the long-term 
artificial selection of meat production traits in chickens.  
The objective of this study was to dissect the genetic 
basis of skeletal muscle growth and development by 
the integration of GWAS and genome-wide detection 
of selection signatures using an F2 chicken resource 
population.  The findings will be essential for obtaining 
an in-depth understanding of the genetic architecture of 
chicken skeletal muscle.
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2. Materials and methods  

2.1. Experimental populations and phenotypic 
measurements

A chicken F2 population, the Northeast Agricultural 
University Resource Population, China (NEAURP), 
was used in the current study.  The population was 
constructed by crossing broiler cocks derived from the 
fat line with high abdominal fat content (Leng et al. 2009) 
and Baier layer dams (a Chinese native breed).  More 
details of this population have been described in previous 
reports (Liu et al. 2008; Zhang et al. 2010, 2011).  A total 
of 519 F2 individuals (263 male chickens and 256 female 
chickens) from 12 half-sib families were used in this study.  
In the process of feeding, all F2 birds had free access to 
feed and water.  These birds were kept under the same 
environmental conditions.  The birds were raised in hatch 
and housed in pens.  The temperature in the chicken 
coop was kept at 18 to 25°C, and the air humidity was 
maintained at 60 to 65%.  The commercial diets provided 
were based on corn and soybeans and in line with all NRC 
(1994) requirements.  From hatch to 3 weeks of age, the 
birds received a starter feed (metabolizable energy (ME), 
3 000 kcal kg–1; crude protein (CP), 210 g kg–1), and from 
4 weeks of age to slaughter the birds were fed a grower 
diet (ME, 3 100 kcal kg–1; CP, 190 g kg–1).  All birds were 
euthanized by intramuscular injection of pentobarbital 
(Sigma, St. Louis, MO, USA) (0.04 g kg–1) under deep 
anesthesia and exsanguination from the jugular vein at 
the age of 12 weeks.  PMW and TMW were measured 
after slaughter at the age of 12 weeks.  Only the samples 
that could successfully provide the chicken pectoralis and 
thigh muscles were included.  During the experiment, 
fixed personnel were responsible for slaughtering, sample 
collection, weighing, preservation, and data recording.

2.2. Genotypes and quality control

Total genomic DNA was extracted from the blood of each 
sample using the reagent test kit.  A single individual 
was used for genome sequencing on the Illumina HiSeq 
PE150 Platform (26 F0 individuals were re-sequenced 
at 10-fold depth; 519 F2 individuals were re-sequenced 
at 3-fold depth).  Each individual was the experimental 
unit.  Library construction and sample indexing were done 
according to the standard protocol of Illumina (Zhang 
et al. 2020).  After alignment, we performed SNP calling 
on a population scale in the package SAMtools (Li et al. 
2009).  Then we calculated genotype likelihoods from 
reads for each individual at each genomic location and the 
allele frequencies in the sample.  The ‘mpileup’ command 

was used to identify SNPs with the parameters of ‘–q 1 –
C 50 –S –D –m 2 –F 0.002 –u’.  Then, to exclude SNP 
calling errors caused by incorrect mapping, only high-
quality SNPs (coverage depth ≥2, root mean square (RMS) 
mapping quality ≥20, miss ≤0.3) were kept for subsequent 
analysis (Huang et al. 2019).  A total of 10 889 955 SNPs 
were left after filtering from 15 868 916 raw SNPs.  The 
missing genotype was imputed using the F0 generation 
10-fold cross-validation in 519 sequencing individuals 
of the F2 generation.  Imputation was performed using 
BEAGLE 4.0 (Browning and Browning 2009) with default 
parameter settings.  It was assumed that there was 
no relationship between each individual and that the 
genotypes were unphased.  Imputation accuracy (r) 
was calculated per SNP by the correlation between the 
observed and imputed genotypes.  A total of 7 890 258
SNPs were left after the imputed 10 889 955 SNPs 
were filtered by MAF ≥0.05 and miss ≤0.2 for the 519 
individuals.  

2.3. Single-marker GWAS

There were 519 samples in our association panel.  A 
total of 7 890 258 SNPs were used in GWAS for meat 
production traits.  Association analysis was conducted 
using the GEMMA (Genome-wide Efficient Mixed-model 
Association) Software Package (Zhou and Stephens 
2012).  For the MLM (mixed linear model) analysis, the 
equation is as follows:

y=Sβ+Xα+Kμ+e
In this equation, y represents phenotype; S is the 

incidence matrix of fixed effects and β is the vector of 
corresponding coefficients including the intercept. Gender, 
BW0 (body weight at hatch), and the top 10 PCs (principal 
components) used for population structure correction were 
included as covariates to build up the S matrix.  X represents 
the vector of SNP genotype and α is the corresponding 
effect of the marker; K is the incidence matrix for μ and μ 
is the vector of random additive genetic effects following 
the multinormal distribution N(0, Gσμ

2), in which G is the 
genomic relationship matrix based on IBS (identity by state), 
and σμ

2 is the polygenetic additive variance.  e represents 
the random residual with a distribution of N(0, Iσe

2) (I is a n 
by n identity matrix and n is the number of the individual).  
Based on the Bonferroni correction method (Duggal et al. 
2008), the genome-wide significance threshold value was 
set as 0.05/N (P-value=6.34E–9), where N is the number of 
informative SNPs.  

2.4. Estimation of genetic parameters

The genetic parameters (heritabil i ty, genetic and 
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phenotypic correlations) for PMW and TMW were 
estimated by the Average Information Restricted 
Maximum Likelihood method based on an animal model 
using the WOMBAT Software (Meyer 2007).  The animal 
model used for the genetic parameter estimation is 
described as follows:

Yli =μ+Sl+BW0+ai+ei

where Yli is the vector of observations for the PMW and 
TMW; μ is the value of the population mean; Sl is the fixed 
effect of sex; BW0 is taken as a covariate in the heritability 
estimation of PMW and TMW; ai is the random direct 
additive genetic effect of individual i, and ei is the random 
residual effects.  A single trait model was used to estimate 
the heritability of PMW and TMW.  Bivariate analyses 
were performed to compute phenotypic and genetic 
correlations between PMW and TMW.

2.5. Genome-wide selection signatures test

Fifteen samples with the highest and lowest phenotypic 
values of PMW and TMW were selected respectively from 
519 individuals and divided into two groups.  Selection 
signature analysis was carried out between the two 
groups.  To identify genome-wide selection signatures 
associated with the adaptation of chicken meat production 
traits, we calculated the genome-wide distribution of FST 

and θπ for the defined group pairs with VCFtools (40-kb 
windows sliding in 10-kb steps).  The θπ ratios were log2-
transformed.  Subsequently, we estimated and ranked 
the empirical percentiles of FST and log2(θπ ratio) in each 
window.  We considered the windows with the top 5% of 
FST and log2(θπ ratio) values simultaneously as candidate 
outliers under strong selective sweep (Li et al. 2013).  All 
outlier windows were assigned to corresponding SNPs 
and genes.  In other steps, the analysis of the allele 
frequency difference (ΔAF) between the two groups was 
realized by R and Perl.

2.6. Functional annotation and enrichment analysis 
of the candidate genes

SNP annotation was performed according to the 
GCF_000002315.6_GRCg6a reference genome using 
the package ANNOVAR (Wang et al. 2010).  Based on 
the genome annotation, SNPs were categorized in either 
exon regions (overlapping with a coding exon), intronic 
regions (overlapping with an intron), splicing sites (within 
2 bp of a splicing junction), upstream and downstream 
regions (within a 1-kb region upstream or downstream), 
or intergenic regions.  Only the high-quality SNPs were 
annotated.  We identified candidate genes according to 
their physical location on the chromosomes and biological 

functions.  According to the analysis results of linkage 
disequilibrium attenuation distance based on PopLDdecay 
Software, candidate genes were screened in the 40 kb 
region upstream and downstream of each top SNP.

Functional enrichment of Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were performed using OmicShare tools (www.omicshare.
com/tools).  The significant P-value (<0.05) was calculated 
as: 

P=1–

M
i

N–M
n–i( ()

N
n( )

)m–1

i=0

∑
where N is the number of genes with a GO/KEGG 
annotation in all genes; n is the number of predicted 
candidate genes in N; M is the number of genes 
annotated as a specific GO term/KEGG pathway in all 
genes; and m is the number of candidate genes annotated 
as a specific GO term/KEGG pathway.  The corrected 
P-value by FDR is 0.05.  The GO term/KEGG pathway 
satisfying this condition is defined as the one significantly 
enriched in the candidate target gene.

3. Results

3.1. Descriptive statistics and genetic parameter 
analysis

The descriptive statist ics and genetic parameter 
analysis are shown in Tables 1 and 2, respectively.  The 
heritabilities of PMW and TMW were 0.976 and 0.937, 
respectively.  There were significant (P<0.01) and positive 
phenotypic correlations (0.831) and genetic correlations 
(0.972) between PMW and TMW.

Table 1  Number of animals (N), mean (M), standard deviation 
(SD), minimum (MIN), maximum (MAX), and coefficient of 
variation (CV) of meat production traits of F2 chickens
Trait1) N M SD MIN MAX CV (%)
PMW 519 236.99 54.18 118.00 405.00 22.86
TMW 519 349.01 80.69 184.00 606.00 23.12
1) PMW, pectoral muscle weight; TMW, thigh muscle weight.

Table 2  Phenotypic and genetic correlations of pectoral muscle 
weight (PMW) and thigh muscle weight (TMW)

PMW TMW
PMW 0.976±0.0141) 0.831±0.014**2)

TMW 0.972±0.007**3) 0.937±0.016
1) Heritability of traits (on diagonal).
2) Phenotypic correlation coefficients with standard error (above 

diagonal).
3) Genetic correlation coefficients with standard errors (below 

diagonal).  
**, significant correlations of PMW and TMW (P<0.01).
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Fig. 1  Manhattan plot with marker density information and quantile–quantile (Q–Q) plot for the association analyses of pectoral 
muscle weight (PMW) and thigh muscle weight (TMW).  In the Manhattan plots (left), –log10(P-value) of the filtered high-quality single 
nucleotide polymorphisms (SNPs) (y-axis) are plotted against their genomic positions (x-axis); SNPs on different chromosomes 
(1 to 36) are denoted by different colors.  Marker density is shown at the bottom of the Manhattan plots.  The horizontal black 
lines represent significant genome-wide association thresholds.  Q–Q plots (right) are displayed as scatter plots of observed and 
expected log P-values. 
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3.2. Genome-wide association of meat production 
traits

The results show that 247 SNPs were associated with 
PMW and 98 SNPs were associated with TMW at the 
Bonferroni corrected genome-wide significance level.  
Most of the detected SNPs were clustered closely 
on chromosomes 1, 4, and 27 (Fig. 1, left).  Function 
annotation was performed in the 40 kb region (genome 
distance spans 40 kb when the r2 drops to 0.1) upstream 
and downstream of each top SNP according to the 
analysis results of the linkage disequilibrium attenuation 
distance (Fig. 2).  There were 70 significant SNPs on 
chromosome 1 overlapping in the association study 
of the two traits, including the top SNP (SNP with the 
most significant association with phenotype) located in 
the 171 411 019 bp of the intronic region of SERPINE3 
on chromosome 1.  A large number of loci explained 
relatively little genetic variation individually.  The top 
SNP explained 11.4 and 9.66% of the phenotypic 

variance of PMW and TMW, respectively (data not 
shown), demonstrating higher genetic contributions than 
other SNPs.  A Q–Q plot was generated to estimate the 
difference between observed and expected chi-square 
statistic values of quantitative traits (Fig. 1, right), and it 
indicated that the potential candidate loci related to the 
traits were not caused by population stratification and the 
statistical model was reasonable.

3.3. Analysis of the selected signature regions

The selection signature regions of 36 chromosomes in 
F2 population during natural selection were identified 
by the combination of FST and θπ ratios statistics.  Each 
was divided into two distinct selection regions (high and 
low phenotypic value) at a 5% empirical distribution.  
The selected regions were usually accompanied by a 
decrease in population polymorphisms and an increase 
in the genetic differentiation rates among subpopulations.  
The distribution of the selection regions shared by FST 
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(log2(θπ ratio) (θπ LPMW/θπ HPMW)≥0.38, FST≥0.09) and 
317 candidate genes in the selected regions of LPMW 
(log2(θπ ratio) (θπ LPMW/θπ HPMW)≤–0.34, FST≥0.09).  
There were 432 candidate genes in the selected regions 
of HTMW (log2(θπ ratio) (θπ LTMW/θπ HTMW)≥0.33, 
FST≥0.08) and 359 candidate genes in the selected 
regions of LTMW (log2(θπ ratio) (θπ LTMW/θπ HTMW)≤–
0.33, FST≥0.08).

3.4. Identification of candidate genes and function-
al enrichment analysis

We checked the distribution of selection signature 
regions and their overlap with the GWAS results within 
the genomic windows to reveal the selected genes of 
chickens in the process of domestication.  A total of 17 
underlying candidate genes were identified, including 
three uncharacterized genes (Table 3).  It is worth 
noting that 6 genes, FOXO1, CAB39L, FAM124A, 
LOC112531568, LOC112531569, and LOC112532426, 
were uniformly mapped in low meat-producing regions 
(LPMW and LTMW).  All underlying candidate genes 
were analyzed for enrichment.  These genes were mainly 
enriched in the GO term carbohydrate derivative catabolic 
process (Fig. 4-A).  Additionally, they were also involved 
in 14 biological process categories, 6 molecular functional 
categories, and 7 cellular components (Appendix A).  
KEGG analysis suggested that the candidate genes 
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Fig. 3  Intersection of the two methods, fixation index and nucleotide diversity (FST and π) used to identify high-quality selection 
regions.  Data points (blue and green) are located on both sides of the left and right vertical dashed lines.  LTMW, low TMW 
selection region; HTMW, high TMW selection region.  Different colors represent different intersection regions.  The frequencies of 
the two methods’ values are distributed in the right and top of the X and Y lines.

and log2(θπ ratio) on the chromosome is shown in Fig. 3.  
Among the candidate regions screened by the FST and θπ 

method, more regions of high meat yield traits (green data 
points) were scanned than low meat yield traits (blue data 
points), suggesting that higher meat yield tends to be a 
positive selection based on artificial action.  There were 
448 candidate genes in the selected region of HPMW 
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were involved in the insulin signaling pathway and FOXO 
signaling pathway (Fig. 4-B).  

4. Discussion

We performed a feasible combination strategy that 
integrates single-marker GWAS methodology and 
selection signature analysis to explore the genetic 
architectures of skeletal muscle traits in an F2 chicken 
population.  The study revealed that the genetic 
determinants responsible for skeletal muscle production 
t ra i ts were mainly local ized on chromosomes 1 
(168.95–172.43 Mb) and 4 (74.37–75.23 Mb).  A total 
of 17 candidate genes were identified and six of them 
were uniformly mapped in low meat-producing regions 
(LPMW and LTMW).  Thus, these results have confirmed 
our hypothesis that some variants and genes would be 
associated with skeletal muscles and these traits would 
leave similarly selected footprints on the genome because 
of long-term artificial selection of meat production traits in 

chickens.
The long-term artificial selection of traits with high 

premiums, such as chicken breast and drumstick meat 
yields, caters to the needs of consumers around the world 
for meat products.  To further mine the key regulatory 
genes of phenotypic differences in chickens, GWAS 
based on linkage disequilibrium between SNPs markers 
and causal loci is considered to be an effective method to 
identify genetic links between phenotypes and genotypes 
(Hirschhorn and Daly 2005; McCarthy et al. 2008; Zhang 
et al. 2019).  However, precisely distinguishing the 
potential causal variations related to the traits of interest 
from nearby neutral loci is one of the daunting challenges 
in genetic research.  Due to the genetic hitch-hiking effect, 
some variants coexist with the selected loci on the LD 
block.  These variants may produce signals similar to the 
actually selected loci that stay in LD.  Given the above 
description, we adopted a feasible combination strategy 
that integrates single-marker GWAS methodology and 
selection signature analysis to identify those significant 

Table 3  Overview of the significant single nucleotide polymorphisms (SNPs) of genome-wide association study (GWAS) and selective 
signatures associated with pectoral muscle weight (PMW) and thigh muscle weight (TMW) 

Trait The position of lead SNP in GWAS P-value Candidate gene Gene position (bp) Selection direction 
of traits1)

PMW Intergenic region between RUBCNL 
(dist=40 651) and LRCH1 (dist=25 848)

2.25E–10 LRCH1 Chr1: 169 520 469–169 644 616 LPMW

PMW Exonic 2.06E–10 CDADC1 Chr1: 170 447 991–170 463 866 LPMW
PMW Intronic 1.92E–12 CAB39L Chr1: 170 465 092–170 526 727 LPMW
PMW Exonic 5.03E–10 LOC112531568 Chr1: 171 008 615–171 039 942 LPMW
PMW Intergenic region between LOC112531569 

(dist=17 093) and DLEU7 (dist=25 823)
4.50E–11 LOC112531569 Chr1: 171 083 270–171 100 945 LPMW

PMW Intronic 4.52E–13 FAM124A Chr1: 171 336 721–171 377 902 LPMW
PMW Intronic 3.04E–13 FOXO1 Chr1: 171 900 263–171 963 540 LPMW
PMW Intronic 5.28E–09 NBEA Chr1: 174 373 491–174 843 850 LPMW
PMW Intergenic region between GPALPP1 

(dist=14 156) and GTF2F2 (dist=8 915)
5.64E–10 GPALPP1 Chr1: 168 950 859–168 965 646 HPMW

PMW Intergenic region between RUBCNL 
(dist=40 647) and LRCH1 (dist=25 852)

2.25E–10 RUBCNL Chr1: 169 433 550–169 453 972 HPMW

PMW 3´ UTR 6.88E–10 ARL11 Chr1: 170 586 604–170 597 668 HPMW
PMW Intronic 4.02E–13 KPNA3 Chr1: 170 597 160–170 650 244 HPMW
PMW Intronic 1.28E–09 LHFP Chr1: 172 287 762–172 427 229 HPMW
TMW Intronic 2.57E–09 CAB39L Chr1: 170 465 092–170 526 727 LTMW
TMW Exonic 9.88E–10 LOC112531568 Chr1: 171 008 615–171 039 942 LTMW
TMW Intergenic region between LOC112531569 

(dist=17 093) and DLEU7 (dist=25 823)
4.95E–09 LOC112531569 Chr1: 171 083 270–171 100 945 LTMW

TMW Intronic 3.59E–11 FAM124A Chr1: 171 336 721–171 377 902 LTMW
TMW Intronic 1.65E–11 FOXO1 Chr1: 171 900 263–171 963 540 LTMW
TMW Intronic 4.83E–09 GBA3 Chr4: 74 366 408–74 429 486 LTMW
TMW Intergenic region between ADGRA3L 

(dist=41 418) and LOC112532426
(dist=17 941)

4.01E–10 LOC112532426 Chr4: 74 546 421–74 555 772 LTMW

TMW Upstream 2.29E–09 KCNIP4 Chr4: 74 568 444–74 948 433 HTMW
TMW Intronic 3.69E–11 SLIT2 Chr4: 74 981 753–75 225 786 HTMW
1) LPMW, low PMW selection region; HPMW, high PMW selection region; HTMW, high TMW selection region; LTMW, low TMW selection 

region.
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SNPs associated with meat production traits at the 
genome-wide level and to explore the regions of the 
genome under selection and the candidate genes that 
exist.  

In this study, we found that most of the significant 
SNPs explained the small phenotypic variance, which is 
consistent with the fact that complex traits in chickens 
are controlled by multiple genes (Andersson and 
Georges 2004).  The GWAS top SNP in the current 
study, located in the 171 411 019 bp of the intronic region 
of SERPINE3 on chromosome 1, was the signal with the 
strongest association for two meat production traits at 
the genome-wide level.  There were significant (P<0.01) 
phenotypic and genetic correlation coefficients between 
PMW and TMW (Table 2).  It is reasonable to speculate 
that the same gene or variation has multiple effects on 
PMW and TMW, known as pleiotropy, which is pervasive 
in chickens (Wright et al. 2010).  The significant SNPs 
identified in this study are promising candidates for 
application to the whole genome selection array to 
improve the meat yield of chickens.

There were 17 candidate genes co-mapped by GWAS 
and selection signature analysis.  Some of these genes 
were enriched in a GO term, carbohydrate derivative 
catabolic process, and KEGG pathways, insulin signaling, 
and FOXO signaling pathways (Fig. 4).  The process and 
pathways are considered to be related to meat production 
traits.  Kong et al. (2017) showed that the cellular and 
physiological functions of differentially expressed genes 
such as carbohydrate metabolism are tightly associated 
with rapid growth and differential muscle fiber contents 
in modern broiler lines by an RNA sequencing (RNA-
seq) method.  Insulin and FOXO signaling pathways play 
a crucial role in both the metabolism of carbohydrates 
and lipid (Lee and Dong 2017) and the development and 
growth of muscle (O’Neill et al. 2016).  In addition, some 
of the identified genes have been reported to be related 
to muscle development or muscle cell differentiation in 
previous literature.  KPNA3 had significant effects on 
some growth traits such as chest muscle weight and leg 
muscle weight in chickens (Xie et al. 2012; Abdalhag 
et al. 2015).  The copy number variation in LHFP 
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(LHFPL6) plays an essential role in the daily weight gain 
of beef cattle (Xu et al. 2019).  Data obtained in mice and 
humans suggested that variation of NBEA abundance 
or activity critically affects body weight, presumably by 
influencing the activity of feeding-related neural circuits 
(Olszewski et al. 2012).  SLIT2 is located in the QTL of 
chicken chromosome 4, affecting growth and muscle 
quality (Pertille et al. 2015; Lyu et al. 2017).  An important 
candidate gene FOXO1 was also identified in our study.  
FOXO1 has been widely confirmed to be closely related 
to skeletal muscle growth and myogenic metabolism in 
animals, such as chicken (Jia et al. 2017), pig (Liu et al. 
2017), and mice (Kamei et al. 2004).  Notably, in addition 
to known genes, an array of uncharacterized genes, 
LOC112531568, LOC112531569, and LOC112532426, 
might be involved in muscle growth and contribute to the 
decrease of chicken meat production.  The candidate 
genes identified in our study are worth investigating with 
respect to their functions and mechanisms in chicken 
muscle growth and development in the future.

The integration of GWAS and selection signature 
analyses revealed that the QTLs responsible for 
skeletal muscle production traits are mainly localized 
on chromosomes 1 (168.95–172.43 Mb) and 4 (74.37–
75.23 Mb).  Some of the genomic regions we identified 
in this study have previously been annotated in two 
different chicken populations.  One was detected in an F2 
population derived from a reciprocal cross between White 
Recessive Rock and Xinghua chickens (Xie et al. 2012), 
and the other was mapped in an advanced intercross line 
generated from an F2 inbred New Hampshire and White 
Leghorn (WL77) lines (Lyu et al. 2017).  In total, five 
detected candidate genes overlapped with six published 
QTL mapped (Appendix B) for meat production traits in 
the Gallus_gallus-5.0 assembly QTL database (Hu et al. 
2019).  Interestingly, we checked the gene expression 
of chicken tissues (from 259 samples) at different 
developmental stages in the Animal Omics Database, and 
found that KPNA3 was highly expressed in breast muscle 
and leg muscle (Appendix C).  An RNA-seq transcriptomic 
study from the rat also strongly supports our results.  
KPNA3 is widely expressed in different periods of rat 
muscle development and shows a biased expression in 
muscle tissue (RPKM 393.2) (Yu et al. 2014).  Also, the 
mechanism of KPNA3 in the growth and development of 
chicken skeletal muscle needs to be investigated in the 
future.  

5. Conclusion

In this study, we integrated GWAS data and selection 
signature regions to refine the list of positional candidate 

genes related to meat production traits in a chicken F2 
population.  The results showed that an array of genes, 
including LRCH1, CDADC1, CAB39L, LOC112531568, 
LOC112531569, FAM124A, FOXO1, NBEA, GPALPP1, 
RUBCNL, ARL11, KPNA3, LHFP, GBA3, LOC112532426, 
KCNIP4, and SLIT2, are candidates for PMW and TMW.  
In particular, the available evidence suggested KPNA3 
and FOXO1 are the most promising causative candidates 
for skeletal muscle growth and development.
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