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Background: [aim: HMG-box protein 1 (HBP1) plays an important role in the senescence and apoptosis of
mammalian cells, but its role in chicken cells remains unclear. The aim of this study was to investigate
the effects of HBP1 on senescence and apoptosis of chicken preadipocytes. Methods: The immortalized
chicken preadipocyte cell line (ICP2) was used as a cell model. Chicken HBP1 knockout and over-
expressing preadipocyte cell lines were established using CRISPR/Cas9 gene editing technology and

Keywords: lentiviral infection. Western blotting was used to detect the protein expression of HBP1 and senescence
Egl;i(en markers p16 and p53. Cell senescence was measured by Sa-f-Gal staining and apoptosis was detected by
Preadipocytes flow cytometry. Results: HBP1 was highly expressed in senescent ICP2 cells compared with young ICP2
Senescence cells. After the deletion of HBP1, the degree of senescence, the apoptosis rate and the protein expression
Apoptosis levels of p16 and p53 were significantly reduced. After the overexpression of HBP1, the degree of

senescence, the apoptosis rate and the protein expression levels of p16 and p53 were significantly

increased. Conclusion: HBP1 promotes the senescence and apoptosis of chicken preadipocytes.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The rapid growth of broilers is accompanied by an increase in
abdominal fat deposition, leading to many adverse consequences,
such as reduced feed efficiency [1] and reproductive performance
[2]. Therefore, one of the main goals of poultry breeding is to
control the excessive deposition of abdominal fat in broilers. The
increase in adipose tissue results from an increase in the number
and size of adipocytes [3]. The size of adipocytes is mainly regulated
by the differentiation of preadipocytes, and the number of pre-
adipocytes is mainly regulated by the proliferation, senescence and
apoptosis of preadipocytes. Research on preadipocyte proliferation,
senescence and apoptosis has mainly focused on humans and ro-
dents [4—8], and not on birds. Our previous study found that HMG-
box protein 1 (HBP1) may be a key protein affecting the growth and
development of chicken adipose tissue (data not published).
However, the role of HBP1 in regulating the development of
chicken adipocytes remains unclear.
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HBP1 is a ubiquitous transcription factor, belonging to the high
mobility (HMG) family of DNA binding proteins [9]. Studies in
mammals have shown that HBP1 plays an important role in cell
cycle transformation, differentiation, senescence and apoptosis. In
a study of rat cardiomyocytes, HBP1 inhibited the G1-S phase of the
cell cycle by regulating key genes involved in cell proliferation [10].
HBP1 also plays an important role in the cell cycle by inhibiting the
Wnt/B-catenin pathway in various types of cells such as NIH3T3
and 293T cells [11]. HBP1 was increased during the differentiation
of mouse C2C12 muscle satellite cells and Ob1771 preadipocytes
[12]. HBP1 also promotes the differentiation of leukemia bone
marrow cell lines, megakaryocytes and red blood cells [13,14].
Studies in 3T3-L1 and MEF cells found that HBP1 can induce ter-
minal differentiation of preadipocytes by regulating C/EBPa
expression [15]. A study in WI-38 human lung fibroblasts found
that HBP1 is required for cell cycle arrest in Ras-induced senescence
and triggers cell senescence [16]. In 2BS (human diploid fibro-
blasts), HeLa (cervical cancer) and in U20S (osteosarcoma) cells,
HBP1 and Pim-1 can form a positive feedback loop, which regulates
cell senescence and apoptosis induced by hydrogen peroxide.
Further studies revealed that the Pim-1-HBP1 positive feedback
loop exerts its effects by regulating the expression of senescence
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marker p16 and apoptosis marker Bax [17]. Studies on 293T cells
showed that HBP1 can also participate in apoptosis as a substrate of
p38 MAPK [18]. In addition, HBP1 regulates chromatin remodeling
by inhibiting the expression of DNMT1, resulting in overall DNA
hypomethylation in some cell lines [19].

To date, no studies have been reported on the relationship be-
tween HBP1 and senescence and apoptosis of preadipocytes.
Therefore, the aim of this study was to investigate the effects of the
chicken HBP1 on the senescence and apoptosis of preadipocytes.

2. Materials and methods
2.1. Cell culture

The immortalized chicken preadipocyte cell line (ICP2) was
preserved in our laboratory [20]. The cells were cultured in DMEM/
F12 medium (Gibco, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum (Gibco) and were maintained at 37 °C in a hu-
midified, 5% CO, atmosphere.

2.2. Establishment of HBP1 knockout preadipocyte cell line

The chicken preadipocyte cell line with HBP1 knockout was
constructed using Cas9 protein/gRNA ribonucleoprotein complex
(Cas9 RNP). Three gRNAs were designed target to the Exon 2 of
chicken HBP1 gene by using the CRISPR RGEN tools (http://www.
rgenome.net/about/). The oligonucleotide sequences of the gRNAs
were shown in Table 1. The primers designed against the target
sites were shown below. Target 1 and target 2: were HBP1-Exon2-
1/2F:5-TGTGGGAAGTGAAGACGA-3’, HBP1-Exon2-1/2R:5'-GAGGA
CTTGTGGCGATG-3'"; target 3: HBP1-Exon2-3F:5'-CAAACAGCGAT
TCAGAAAG-3', HBP1-Exon2-3R:5'-AAGCACAAACGAGACCCT-3'. The
GeneArt™ Precision gRNA Synthesis Kit (A29377; Invitrogen) was
used for in vitro transcription and the purification of the gRNAs,
according to the manufacturer's instructions. ICP2 cells were
seeded into a 12-well cell culture plate. When cells reached 70%
confluency, the Cas9 protein (TrueCut™ Cas9 Protein v2, A36497;
Invitrogen) was premixed with the gRNA (Cas9: gRNA = 1:1.5) us-
ing a transfection reagent (Lipofectamine™ CRISPRMAX™ Trans-
fection Reagent, CMAX00001; Invitrogen) and added to the cell
culture medium. After 48 h, genomic DNA was extracted from the
cells. Then the genome sequences containing the target sites were
amplified by PCR. The GeneArt® Genomic Cleavage Detection Kit
(A24372; Invitrogen) was used to identify the cleavage efficiency of
each gRNA. The gRNA with the highest cleavage efficiency was
chosen for monoclonal screening. Monoclonal cell line was ob-
tained by limiting dilution. The types of HBP1 gene editing in the
monoclonal cell line were detected by TA cloning and sequencing.
The knockout effect of HBP1 was envaluated by Western blotting.

2.3. Establishment of a preadipocyte cell line stably over-expressing
HBP1

A lentivirus over-expressing HBP1(HBLV-GFP-HA-HBP1) and a

Table 1
Oligonucleotide sequences used in the construction of HBP1-Exon2-sgRNA.

gRNA
HBP1-Exon2-gRNA1

Oligonucleotide sequence (5'-3')

F: AATCGCTGTTTGAGGTATGT
R: ACATACCTCAAACAGCGATT
F: TTTCACATCAGGAACGTTCA
R: TGAACGTTCCTGATGTGAAA
F: AGTGCTCATTCTTGTGAGAA
R: TTCTCACAAGAATGAGCACT

HBP1-Exon2-gRNA2

HBP1-Exon2-gRNA3

control lentivirus (HBLV- GFP-HA) were constructed by Hanbio
(Shanghai, China). When ICP2 cells achieved 60% confluency, they
were infected with HBLV-GFP-HA-HBP1 or HBLV-GFP-HA at
different multiplicity of infection (MOI). After 72 h, the infection
efficiency was evaluated based on GFP fluorescence intensity and
the optimum MOI was confirmed. The positive cells were selected
based on the presence of the GFP gene in these constructs. Briefly,
72 h after infection with the optimum MOI, GFP-positive cells were
sorted into one well of a six-well plate by flow cytometry. Over-
expression of HBP1 was confirmed by Western blotting.

2.4. Western blotting

Total protein was extracted from preadipocytes after lysis using
radio immunoprecipitation assay buffer. Cellular extracts were
supplemented with protease inhibitor cocktail and protein levels
weremeasured and equal amounts were loaded onto SDS-PAGE
gels. After transfer to nitrocellulose membranes, blots were pro-
bed overnight at 4 °C with the appropriate primary antibody (anti-
HBP1, 1:1000, Abcam; anti-p16, 1:1000, USCN; anti-p53, 1:1000,
USCN; anti-B-actin, 1:1000, TransGen Biotech) followed by a HRP-
conjugated secondary antibody (1:5000, TransGen Biotech). Spe-
cific protein bands were visualized using the BeyoECL Plus kit
(Beyotime) and a chemiluminescence system (Sagecreation, Bei-
jing, China).

2.5. Sa-B-Gal staining

Cell senescence was detected using the Senescence B-Galacto-
sidase Staining Kit (Beyotime, C0602). Three biological replicates
were set for each treatment group and three visual fields under the
microscope were randomly selected for each biological replicate.
Cytoplasmic with blue staining were senescent cells. The senescent
cells and normal cells were counted by Image ] software.

2.6. Flow cytometry

Apoptosis was analyzed by flow cytometry using the Annexin V-
FITC Apoptosis Detection Kit (Beyotime, C10625). Each treatment
group was assessed in triplicate.

2.7. Statistical analysis

All experiments were repeated three times. Experimental data
were analyzed using the analysis of variance (ANOVA) module of
the SPSS16.0 statistical software. The data was expressed as
means + standard deviations. *P < 0.05 represented a significant
difference and **P < 0.01 represented a highly significant
difference.

3. Results
3.1. Establishment of HBP1 knockout preadipocyte cell line

The gRNA obtaind by In vitro transcription (Fig. 1A) was mixed
with Cas9 protein to form Cas9 RNP, and were then transfected into
ICP2 cells. The result of genome cleavage activity analysis showed
that gRNAT1 has the highest cleavage efficiency (Fig. 1B). Therefore,
gRNA1-transfected cells were selected for monoclonal screening.
Two monoclonal cell lines were obtained, one of them was wild-
type and the other one was homozygous with a 219-bp deletion
of exon 2 of chicken HBP1 gene and was named as HBP1 /-
(Fig. 1C). Western blotting confirmed that the lack of HBP1 protein
expression in HBP1~/~ cells (Fig. 1D).
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Fig. 1. Establishment of HBP1 knockout preadipocyte cell line. (A) gRNAs were synthesized by using the GeneArt Precision gRNA Synthesis Kit. (B)The cleavage efficiencies of gRNAs
were detected by using the GeneArt® Genomic Cleavage Detection Kit 48 h after transfection of Cas9 RNP. (C) The types of gene editing in monoclonal cell lines were detectd by TA
cloning and sequencing. (D) The expression level of HBP1 was detected by Western blotting.

3.2. Establishment of HBP1 over-expression preadipocyte cell line

The optimum MOI of ICP2 cells infected with the lentivirus was
chosen at 100, since the GFP fluorescence intensity was the stron-
gest both in the control group and the HBP1 overexpression group
at this degree of MOI (Fig. 2A). 72 h after infections with the opti-
mum MOI, GFP positive cells were enriched by flow cytometric. The
result of western blotting showed that the expression level of HBP1
was significantly increased in the overexpression group compared
with that of the control group (Fig. 2B).

3.3. Chicken HBP1 is highly expressed in senescent preadipocytes

The literature indicates that the degree of cell senescence in-
creases with continuous cell division [21]. So ICP2 cells were
designated the young group at 0 h of culture, and cells cultured for
48 h were designated the senescence group. The result of Sa-B-Gal
staining showed that the senescence degree of senescence group
was significantly higher than that of the young group (Fig. 3A).
Western blot analysis revealed that HBP1 expression was signifi-
cantly increased in the senescent group compared with that in the
young group (Fig. 3B).

MO1-10

HBLV-GFP-HAHEP] HBLVGFPHA D

Fig. 2. Establishment of HBP1 over-expressing preadipocyte cell line. (A) GFP positive
cells were observed by using fluorescence microscopy at different degree of MOL. Scale
bar: 200 um. (B) The expression level of HBP1 expression was detected by western
blotting.

3.4. HBP1 promotes the senescence and apoptosis of preadipocytes

Sa-B-Gal staining revealed that the degree of cell senescence
decreased remarkably after HBP1 knockout while increased
significantly after HBP1 overexpression (Fig. 4A). Western blotting
revealed that the expression levels of p16 and p53 decreased after
HBP1 knockout while increased after overexpression of HBP1
(Fig. 4B). The result of flow cytometry showed that the percent of
apoptotic cells decreased significantly after HBP1 knockout while
significantly increased after HBP1 overexpression (Fig. 4C).

4. Discussion

To our knowledge, there are few studies on gene editing using
Cas9 RNP, and most of them focus on mammals. There are many
advantages to using the RNP as a CRISPR/Cas9 delivery system
compared with Cas9 plasmid, Cas9 mRNA and Cas9 lentiviral. First,
when the RNP is paired with a DNA templete, a “total package” is
formed without the need for a cell environment to synthesize Cas9
protein and sgRNA, which enables faster and more efficient gene
editing [22]. Second, when genome editing is completed by Cas9
RNP, the unnecessary Cas9 protein can be quickly removed by the
cells, thus greatly reducing non-target cleavage [22]. Third, Cas9
RNP avoid the damage of cells caused by random integration of
plasmid sequece into the genome of the host cells [22]. Cas9
nuclease recognizes the adjacent motifs (PAM) of the prototype
spacer region adjacent to gRNA and produces double-strand breaks,
which are rapidly repaired by non-homologous end-junction
(NHEJ) or homologous recombination. NHEJ-mediated double-
stranded DNA repair usually produces point mutations, insertions
or deletions of short fragments, but occasionally produces in-
sertions or deletions of long fragments [23—25]. In this study, for
the first time, we first used the Cas9 RNP as a CRISPR/Cas9 delivery
system for gene editing in poultry cells, and obtained a monoclonal
preadipocyte cell line with HBP1 knockout (Fig. 1C—D). We believe
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Fig. 3. Expression of HBP1 in young and senescent preadipocytes. (A) Sa-B-Gal staining of ICP2 cells in the young group and the senescence group. Scale bar: 200 pm. The red circle
indicates the senescent cells. (B) Western blotting was used to detect the expression level of HBP1.
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Fig. 4. Effects of HBP1 on the senescence and apoptosis of preadipocytes. (A) Cell senescence was determined by Sa-B-Gal staining. Scale bar: 200 pum. (B) Western blot analysis of
p16 and p53 in the preadipocytes. (C) Cell apoptosis was determined by Annexin V-FITC/PI staining followed by flow cytometry.

that Cas9 RNP delivery system will play an important role in
genome editing of agricultural animals in the near future.

Cell senescence and apoptosis are conceptually similar, both
being self-protective mechanisms of cells. The most commonly
studied pathways of cell senescence were p53-p21 and p16-Rb. The
p53-p21 pathway mainly participates in the process of cell senes-
cence through the following two mechanisms. First, p53 plays an
important role in maintaining cell senescence induced by telomere
shortening [26]. Second, when cells are damaged, p53 regulates the
cell cycle and promotes cell senescence [27]. The involvement of
p16 in cell senescence is mainly related to the Rb signaling
pathway. Indeed, p16 regulates cell senescence by promoting the
binding of Rb protein to E2Fs family transcription factors [28].
Studies have shown that p53 not only regulates cell senescence, but
also plays an important role in regulating cell apoptosis [29].

Mammalian studies have shown that HBP1 can promote the
senescence of WI-38 pulmonary fibroblasts and the apoptosis of
K562 myeloblasts [30], but its role in regulating the senescence and
apoptosis of preadipocytes is unclear. In this study, we found that

HBP1 was highly expressed in senescent preadipocytes (Fig. 3A and
B), which suggested that HBP1 might play a role in senescence of
chicken preadipocytes. In HBP1 knockout and overexpressing pre-
adipocyte lines, we found that HBP1 promotes the senescence of
chicken preadipocytes and upregulates the expression of senes-
cence markers p16 and p53 [26] (Fig. 4A and B). In view of this, we
speculate that HBP1 may affect the senescence of chicken pre-
adipocytes by regulating the expression of p16 and p53. As is
known, cell senescence is often accompanied by apoptosis, and p53
is not only a marker gene of cell senescence, but also a critical
molecular of the apoptotic pathway [29]. Therefore, we supposed
that HBP1 may play a role in the apoptosis of chicken pre-
adipocytes. The result of flow cytometry confirmed our hypothesis
that HBP1 promotes the apoptosis of preadipocytes in chickens
(Fig. 4C).

In summary, we first reported that HBP1 positively regulated
senescence and apoptosis of preadipocytes in birds. However, the
underlying mechanisms need to be further studied.
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