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germplasm characteristics. This study used fotran 90 to simulate and rebuild the classical Buri’ s Drosophila
experiment’ s conservation process, and utilize measure index — Gene frequency, F —statiistics, Heterozygosity to
measure the variation of within and between populations genetic diversity in the process of specific gene in the storage
generation. Subsequently, OMPG (one-migration—per—generation) rule was used to research the maintaining effect that
migration affects the livestock conservation groups’ genetic diversity. The overall trend in conservation groups genetic
diversity, with the extension of conservation generations, is reducing gradually, Specificlly, the degree in population
differentiation increased: Fst, Fit, from the initial generation: 0.0421, 0.0011, rising to 19 generations: 0.3885,
0.3305, rises as high as 89.16% and 99.67% ; heterozygosity reduction: hi, hs, from the initial generation: 0.4994,
0.4790, declining to 19 generation: 0.3347, 0.3057, decreases to 32.98% and 36.18% respectively; then by utilizing
the OMPG principles to operate species groups and found that the degree of population differentiation weaken: Fst, Fit,
from the initial generation after operating the OMPG principle: 0.3667, 0.3504 , declining to 19 generations after
operating OMPG principle 0.2341, 0.1944, decreases to 36.16 % and 44.52%, respectively; Heterozygosity rised: hi, hs,
from the initial generation after operating the OMPG principle: 0.3248, 0.3166, rising to 19 generations after operating
OMPG principle: 0.4025, 0.3826 , rises as high as 23.92% and 20.84%, respectivelyEffect of genetic drift leads to a loss
of genetic diversity within populations, The OMPG principle inputting effect can offset the genetic recession of the small
conservation groups, and maintain the stability of the genetic diversity in the conservation groups.
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Comparison of DNA Methylation in Abdominal Adipose Tissue between Chicken Lines Divergently
Selected for Fatness

ZHANG Tian—mu, DUAN Kui, WANG Shou-zhi, YAN Xiao—hong, LI Hui, WANG Ning®
(Key Laboratory of Chicken Genetics and Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction,
Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural

University, Heilongjiang Harbin 150030, China)

Abstract: The fat and lean broilers of the 18th generation of Northeast Agricultural University broiler lines divergently
selected for abdominal fat content (NEAUHLF) from 4 to 7 weeks of age were used to detect the expression of DNA
methyltransferases (DNMTI, DNMT3A and DNMT3B) and global DNA methylation in the abdominal adipose tissues
using real —time RT —PCR and MethylFlash™ Methylated DNA Quantification Kit. The results showed that the
expression levels of DNMTI and DNMT3A genes were significantly higher in the lean line than in the fat line (P<
0.05). DNMT3B gene expression was lowly expressed in chicken adipose tissue, comparatively, it was higher expressed
in the lean line at 4, 6 and 7 weeks of age than in the fat line (P<0.05). Consistently, DNA methlyation analysis
showed that the global DNA methylation levels in abdominal adipose tissue were significantly higher in lean line than
in fat line in all tested ages (P<0.05). Our results indicated that DNA methylationis involved in chicken adipose
development and the DNA methylation differencemay contribute to the fatness trait difference in NEAUHLF.
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