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Abstract
Through posttranscriptional gene regulation, microRNA (miRNA) is linked to a wide variety

of biological processes, including adipogenesis and lipid metabolism. Although miRNAs in

mammalian adipogenesis have been worked on extensively, their study in chicken adipo-

genesis is still very limited. To find miRNAs potentially important for chicken preadipocyte

development, we compared the preadipocyte miRNA expression profiles in two broiler lines

divergently selected for abdominal fat content, by sequencing two small RNA libraries con-

structed for primary preadipocytes isolated from abdominal adipose tissues. After bioinfor-

matics analyses, from chicken miRNAs deposited in miRBase 20.0, we identified 225

miRNAs to be expressed in preadipocytes, 185 in the lean line and 200 in the fat line (de-

rived from 208 and 203 miRNA precursors, respectively), which corresponds to 114 miRNA

families. The let-7 family miRNAs were the most abundant. Furthermore, we validated the

sequencing results of 15 known miRNAs by qRT-PCR, and confirmed that the expression

levels of most miRNAs correlated well with those of Solexa sequencing. A total of 33 miR-

NAs was significantly differentially expressed between the two chicken lines (P<0.05).

Gene ontology analysis revealed that they could target genes enriched in the regulation of

gene transcription and chromatin function, response to insulin stimulation, and IGF-1 signal-

ing pathways, which could have important roles in preadipocyte development. Therefore, a

valuable information and resource of miRNAs on chicken adipogenesis were provided in

this study. Future functional investigations on these miRNAs could help explore related

genes and molecular networks fundamental to preadipocyte development.

PLOS ONE | DOI:10.1371/journal.pone.0117843 February 12, 2015 1 / 21

OPEN ACCESS

Citation:Wang W, Du Z-Q, Cheng B, Wang Y, Yao J,
Li Y, et al. (2015) Expression Profiling of Preadipocyte
MicroRNAs by Deep Sequencing on Chicken Lines
Divergently Selected for Abdominal Fatness. PLoS
ONE 10(2): e0117843. doi:10.1371/journal.
pone.0117843

Academic Editor: Zeng-Ming Yang, South China
Agricultural University, CHINA

Received: September 11, 2014

Accepted: January 1, 2015

Published: February 12, 2015

Copyright: © 2015 Wang et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data are available from
NCBI SRA archive: SRR1562981 and SRR1563007.

Funding: This study was supported by the
National 863 project of China (No. 2013AA102501),
National Basic Research Program of China
(No. 2009CB941604), and China Agriculture
Research System (No. CARS-42). The funders had
no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0117843&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
As small non-coding RNA molecules, ~22 nucleotides in length, microRNAs (miRNAs) can
regulate their RNA targets by either direct degradation or translational inhibition through par-
tial complementary sequence recognition and binding. Detailed studies on miRNA genomics,
evolution and function revealed that they are involved in a wide variety of biological processes,
such as cell differentiation, proliferation, disease development [1,2], as well as adipogenesis and
lipid metabolism [3–23].

Adipogenesis is orchestrated by a fine balance of molecular and cellular signals, the disrup-
tion of which could change adipocyte size or number, and the ensuing expansion or contraction
of white adipose tissue will happen [3]. In mammals, a number of miRNAs have been demon-
strated to target genes involved in adipogenesis and lipid metabolism, such as the regulation on
the proliferation of adipose tissue-derived mesenchymal stem cells by miR-21 and miR-196a [4–
6]; the enhancement of adipogenesis by miR-103, miR-224 and the miR-17–92 cluster [7–9]; the
impairment of adipogenesis by the let-7 family, miR-448, miR-15a and miR-27 [10–13]; the reg-
ulation of adipocyte lipid metabolism by miR-27a and miR-143 [13–15]; and the important role
of miR-33 on the repression of sterol transporters reported in numerous studies [16–24].

In chickens, a majority of the miRNA studies have been performed to examine their roles in
growth performance, reproduction and disease resistance [25–31]. However, very few studies for
chicken adipogenesis were conducted. One study examined the role of miR-33 on the regulation
of FTO gene, which is important in adipose tissue development [24]. Two other studies were lim-
ited in the identification of miRNAs, one in muscle and adipose tissues [32], and the other in pre-
adipocytes obtained from Arbor Acres (AA) broilers reported previously by our group [33].

In order to better understand miRNAs involved in chicken adipogenesis, we used the
Northeast Agricultural University broiler lines divergently selected for abdominal fat content
(NEAUHL), which showed marked difference in abdominal fat content between the two lines,
and have been studied extensively in searching for genetic factors underlying the development
of adipose tissue [34–36]. Small RNA libraries were constructed and sequenced, using primary
preadipocytes collected from abdominal fat tissues. After comparison between the fat and lean
broiler lines, a total of 33 miRNAs were found to be significantly differentially expressed. Fur-
thermore, gene ontology analyses showed that the target genes of these differentially expressed
miRNAs were enriched in pathways potentially related to adipocyte development and lipid me-
tabolism, such as transcription regulation, chromatin regulator, response to insulin stimula-
tion, and more interestingly, IGF-1 signalling pathway and epigenetic regulation of gene
expression. We found that most of these miRNAs could be important to adipogenesis, by ex-
tensive literature mining and a combined analysis of gene expression profiling on chicken prea-
dipocytes. Future investigation on the relationship between the function of these miRNAs and
preadiopocyte development is still warranted, which could help explore related genes and mo-
lecular networks fundamental to preadipocyte development.

Results
We sequenced two small RNA libraries built from lean and fat broiler preadipocytes, which
contained 14,146,164 and 15,723,681 raw reads, respectively. In the lean chicken line, 80.60%
of total reads and 53.65% of unique reads could be mapped to the chicken reference genome,
and for the fat chicken line, the proportions were 82.96% and 46.68%, respectively.

After quality control procedures (see Methods), 13,463,693 and 12,490,340 short reads were
kept for further analyses for the lean and fat chicken lines, respectively (Table 1). We found
that 8.58% and 8.45% of the clean reads correspond to miRNAs for the lean and fat chicken
lines, respectively. The remaining clean reads could be mapped to other genomic locations,
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Table 1. Summary of short reads produced by small RNA sequencing after data cleaning procedure in each sample.

Type Lean line Fat line

Count Percentage Count Percentage

30-adapter 127,283 0.92 418,321 2.70

Insert 86,270 0.62 1,719,912 11.12

50-adapter 104,238 0.75 140,980 0.91

<18 nt 73,063 0.53 698,054 4.51

polyA 698 0.01 899 0.01

Clean reads 13,463,693 97.17 12,490,340 80.75

High-quality reads 13,855,245 100 15,468,506 100

Total reads 14,146,164 15,723,681

doi:10.1371/journal.pone.0117843.t001

Fig 1. Length distribution of small RNA read sequences in fat and lean chicken lines.

doi:10.1371/journal.pone.0117843.g001
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corresponding to other different kinds of small RNAs, including repeats, snRNA, snoRNA,
rRNA and tRNA (S1 Table). In agreement with the definition of miRNA, it is clear that in the
length range of 18 to 30 nucleotides (nt), reads of 22 nt are the most abundant, distributed with
a percentage of 16% and 18% in the lean and fat chicken lines, respectively (Fig. 1).

Fig 2. Circular view of miRNAs identified in the chicken genome.Data tracks viewed from outside inwards: 1) chicken chromosomes; 2) and 3) miRNAs
abundantly expressed in the lean and fat chicken lines, respectively; 4) miRNA labels; 5) link lines for miRNA paralogs found to be expressed in chicken
preadipocytes. Details on the sequence alignment between miRNA precursors for these miRNA paralogs (chromosome coordinates and sequence identity)
can be found in S2 Table.

doi:10.1371/journal.pone.0117843.g002
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Identification of miRNAs in the two chicken lines
Of the 996 Gallus gallusmature miRNAs deposited in miRBase 20.0, 225 were identified in our
two libraries (185 in the lean line and 200 in the fat line) (Fig. 2), which belonged to a total of
114 miRNA families, and were derived from 208 and 203 miRNA precursors (pre-miRNAs) in
the lean and fat lines, respectively. The top 10 abundant miRNAs included the let-7 miRNA
family (let-7a, j, b, f, c, and k), gga-miR-148a, gga-miR-146c, gga-miR-10a, and gga-miR-21.
The let-7 miRNA family was the most abundant, representing 83.3% and 79.46% of the total
reads in lean and fat broilers, respectively. Moreover, gga-let-7a and gga-let-7j were the most
frequently sequenced miRNA in both lines (>18%) (Figs. 2 and 3). Three other miRNAs, gga-
miR-148a, gga-miR-146c and gga-miR-10a were more abundant in the lean line than in the fat
line. In contrast, gga-miR-21 was more abundant in the fat line.

Among the 225 miRNAs identified, 33 were significantly differentially expressed between
the two chicken lines (P<0.05), in which 26 miRNAs were highly expressed (up-regulated),
and 7 miRNAs were lowly expressed (down-regulated) in the fat chicken line. The most signifi-
cantly differentially expressed were gga-miR-206 (3.5-fold), gga-miR-31 (2.5-fold), gga-miR-
3535 (2.5-fold), gga-miR-17–3p (2.3-fold), gga-miR-429 (2.3-fold) and gga-miR-200b (2.2-
fold), and in comparison, gga-miR-454 (-2.9-fold) and gga-miR-1b (-2.7-fold) were those
mostly down-regulated in the fat line (Fig. 4). Among the 33 significantly differentially express-
ed miRNAs, gga-miR-101 had the largest number of reads in both fat and lean lines.

Fig 3. The top 10most abundantly expressed miRNAs.

doi:10.1371/journal.pone.0117843.g003
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In addition, in searching for novel miRNAs, we adopted the three-step approach, including
the control on number of short reads, prediction of hairpin structure, and constraints on both
number of short reads and locations corresponding to novel miRNAs (details as in Methods).
A total of 107 and 571 novel miRNAs were found in the lean and fat chicken lines, respectively
(S3 Table and S4 Table). Only were three novel miRNAs found to be in common in both lines
(gga01:118610977–118611076, gga11:552873–552951, and gga26:640852–640926).

Verification of sequencing results
To validate the results obtained from high-throughput sequencing, we selected 15 miRNAs al-
ready known in miRBase and 22 novel miRNAs detected in this study for validation by qRT-
PCR, respectively. Firstly, for the 15 known miRNAs, we extracted RNA from primary

Fig 4. Differentially expressedmiRNAs. 26 up-regulated miRNAs, and 7 down-regulated miRNAs in the fat chicken line. Fold-change (Y-axis) indicates in
log2-scale the fold-changes between the number of reads of miRNAs in the fat chicken lines and the lean chicken line.

doi:10.1371/journal.pone.0117843.g004
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preadipocytes isolated from abdominal tissues for a total of 10 birds (5 from each of the two
NEAUHL chicken lines at 16th generation), and each bird was assayed individually and in tripli-
cate. These miRNAs were divided into three groups according to their expression levels in the
fat broiler line, 4 highly expressed (gga-miR-21, gga-miR-148a, gga-miR-103, gga-miR-101)
(2-ΔCt>0.7), 4 moderately expressed (gga-miR-100, gga-miR-146a, gga-miR-92, gga-miR-2188)
(0.7>2-ΔCt>0.08), and 7 lowly expressed (gga-miR-1a, gga-miR-130a, gga-miR-221, gga-miR-
19a, gga-miR-181b, gga-miR-458, gga-miR-17–3p) (2-ΔCt<0.08) (Table 2). Four miRNAs signif-
icantly differentially expressed between the fat and lean chicken lines detected by deep sequenc-
ing were included in the list, i.e. gga-miR-101, gga-miR-2188, gga-miR-1a and gga-miR-17–3p.
After qRT-PCR analyses, gga-miR-101 was also found to be significantly differentially express-
ed, and gga-miR-1a and gga-miR-17–3p were suggestively significant. Consequently, our qRT-
PCR analyses confirmed that the expression level of most of the 15 miRNAs correlated well with
those of Solexa sequencing (S1 Fig.). Furthermore, we found that two miRNAs, gga-miR-92 and
gga-miR-221, were significantly differentially expressed between the two chicken lines by qRT-
PCR analyses. The discrepancy of the significance of miRNA expression between the two lines
could be possibly due to that animals from different generations were assayed, and individually
(see Methods) (Fig. 5).

Secondly, for the 22 novel miRNAs selected for validation, we found that 17 of them
(77.27%) did exist. These 17 miRNAs expressed with relatively low abundance, which was in
accordance with the low number of short reads in the miRNA sequencing data (Fig. 6,
Table 3).

Gene ontology analyses
We searched the target genes of the 33 significantly differentially expressed miRNAs. In total,
2,097 and 1,212 genes were found to be targeted by the 26 up-regulated miRNAs and the other
7 down-regulated miRNAs in the fat broiler line, respectively. Within these two sets of genes,
853 were common.

Table 2. Number of reads and expression levels of the 15 miRNAs chosen for qRT-PCR validation.

Number of reads in the lean
line

2-ΔCt in the lean line (Mean
±SD)

Number of reads
in the fat line

2-ΔCt in the fat line
(Mean±SD)

p-value

gga-miR-21 2115 2.06±0.15 3391 2.79±0.58 0.06

gga-miR-148a 3326 1.01±0.32 3000 0.53±0.10 0.04

gga-miR-103 875 0.99±0.18 1289 0.91±0.23 0.56

gga-miR-101 446 0.26±0.09 1272 0.73±0.04 0.0001

gga-miR-100 373 0.59±0.15 215 0.32±0.09 0.02

gga-miR-92 78 0.25±0.03 99 0.15±0.03 0.002

gga-miR-146a 105 0.17±0.15 158 0.15±0.06 0.89

gga-miR-2188 27 0.05±0.05 104 0.09±0.03 0.20

gga-miR-130a 55 0.09±0.02 71 0.05±0.01 0.03

gga-miR-1a 36 0.02±0.01 122 0.07±0.04 0.06

gga-miR-19a 15 0.04±0.01 18 0.02±0.01 0.01

gga-miR-221 25 0.03±0.003 37 0.02±0.004 0.003

gga-miR-17–
3p

4 0.008±0.002 22 0.01±0.003 0.09

gga-miR-181b 6 0.006±0.003 6 0.006±0.001 0.93

gga-miR-458 6 0.001±0.0003 2 0.0004±0.0002 0.39

doi:10.1371/journal.pone.0117843.t002
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Gene ontology analyses were performed by the DAVID approach on all the 2,456 genes tar-
geted by the 33 significantly differentially expressed miRNAs. Genes predicted to be targeted
by those 33 differentially expressed miRNAs were significantly enriched in several biological
processes, including transcription regulation, chromatin regulator, cell morphogenesis, cellular
response to insulin stimulus, mesenchymal cell differentiation, and the regulation of pro-
grammed cell death (Fig. 7). Furthermore, the separate gene ontology analyses identified three
interesting biological pathways, i.e. cytoskeleton regulation, IGF-1 signaling pathway and epi-
genetic regulation of gene expression, which appeared to be targeted specifically by miRNAs
up-regulated in the fat broilers. These biological processes could potentially contribute to ex-
plaining the different levels of fatness in the two divergently selected chicken lines.

Fig 5. qRT-PCR validation of miRNAs in the preadipocytes of the lean and fat chicken lines.miRNA expression levels were normalized, and were
selected at high, intermediate and low levels according to their number of reads by Solexa sequencing. Seven miRNAs (gga-miR-148a, gga-miR-101, gga-
miR-100, gga-miR-92, gga-miR-130a, gga-miR-19a and gga-miR-221) with significantly differential expression levels were found (* P<0.05; ** P<0.01).
Inset shows the enlarged view of the five lowly expressed miRNAs.

doi:10.1371/journal.pone.0117843.g005
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Discussion
In the current study, we compared miRNA expression profiles for preadipocytes collected
from fat and lean broilers divergently selected for abdominal fat content, and identified 225
known miRNAs. We further validated the sequencing results of 15 known miRNAs by qRT-
PCR, and confirmed the expression level of most miRNAs correlated well with those of Solexa
sequencing. Gene ontology analysis revealed that 33 significantly differentially expressed miR-
NAs between the two chicken lines could participate in a variety of biological processes poten-
tially important to preadipocyte development.

Adipocyte differentiation is a complex process requiring fine-tuning of a series of cellular
and molecular events orchestrated by transcription factors and other regulatory elements,
which can be further complicated by an extra layer of regulation posed upon by epigenetic reg-
ulators and endocrine signals [37–39]. Interestingly, our gene ontology analyses on genes tar-
geted by the 33 significantly differentially expressed miRNAs identified several biological

Fig 6. Expression validation of 17 novel miRNAs.Novel miRNAs have relative low expression levels, consistent with their low read numbers by
Illumina sequencing.

doi:10.1371/journal.pone.0117843.g006
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processes, including cellular response to insulin stimulus, mesenchymal cell differentiation,
transcription regulation and chromatin regulator, cell morphogenesis and the regulation of
programmed cell death. It is well recognized that insulin is directly related to the regulation of
glucose level, and insulin resistance brings detrimental effects to cellular metabolism, leading
to metabolic diseases, e.g. obesity [40–42]. Adipocytes can be differentiated from mesenchymal
stem cells, and the regulation on this process and the ensuing cell morphogenesis and cell
death pathway will definitely affect the development of adipose tissue [43–45]. Chromatin
modification and transcription regulation, such as gene methylation and histone modifications,
were also found to be important to adipogenesis [46–48]. Recently, miR-148a was found to be
able to target DNMT1, affecting the methylation status of adipocytes [49].

Three biological processes targeted specifically by up-regulated miRNAs in the fat chicken
line, cytoskeleton regulation, IGF-1 signalling pathway and epigenetic regulation of gene ex-
pression, are bona fidemolecular pathways demonstrated to be fundamental to adipocyte de-
velopment. Cytoskeleton remodeling through acetyltransferase MEC-17, BSCL2/seipin and
oxygen levels were recently found to be related to adipogenesis [50–52]. IGF-1 has long been
regarded as one of the adipocyte differentiation stimulators, and extensive studies have been
conducted to study its exact roles on growth, obesity and disease development [53–56]. In
chickens, it was shown to be related to growth and abdominal fat content [57,58], and in our
divergently selected chicken lines, the genomic region containing IGF-1 on chicken chromo-
some 1 was also shown to be under selection by selective sweep analysis [35]. The epigenetic ef-
fects on gene transcription, and its potential relationship to adipogenesis were also reported
previously [46–49].

In addition, we searched the genes targeted by down-regulated miRNAs in the fat broiler
lines for enriched biological processes. However, we did not find any interesting significant
processes, possibly due to the few number of genes (a total of 105).

Table 3. Expression level of 17 novel miRNAs validated.

Number of reads in the lean line 2-ΔCt in the lean line Number of reads in the fat line 2-ΔCt in the fat line Fold-change*

II-0414 0 1.07E-03 86 3.68E-03 3.44

I-0182 47 2.42E-04 0 1.74E-03 7.19

II-1249 0 5.33E-04 35 1.68E-03 3.15

II-0766 0 3.10E-04 30 5.32E-04 1.72

I-0056 52 6.51E-05 0 2.63E-04 4.04

I-0038 10 2.02E-04 0 2.53E-04 1.25

I-0199 155 1.43E-04 0 2.51E-04 1.76

II-0731 0 8.57E-05 10 2.51E-04 2.93

I-0426 37 6.54E-05 0 2.50E-04 3.82

II-0166 0 6.35E-05 15 2.20E-04 3.46

II-1005 0 7.17E-05 68 1.91E-04 2.66

I-0094 23 9.30E-05 0 1.54E-04 1.66

I-0188(II-0689) 57 6.15E-05 12 1.08E-04 1.76

I-0254 20 8.53E-06 0 3.89E-05 4.56

I-0194 68 7.90E-06 0 2.92E-05 3.70

I-0252 220 7.73E-06 0 1.70E-05 2.20

I-0276 66 3.82E-06 0 1.23E-05 3.22

Note: * indicates the fold changes of 2-ΔCt values in the fat line against the lean line.

doi:10.1371/journal.pone.0117843.t003
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After exhaustive literature mining, among the 33 significantly differentially expressed miR-
NAs, a total of 21 miRNAs have been demonstrated to be involved in (pre-)adipocyte develop-
ment and metabolism (details in S5 Table). The most interesting miRNA could be miR-33,
reported in a number of studies [16–24], which is highly important on cholesterol homeostasis
by repressing sterol transporters. For miR-222, a known regulator of kit ligand signaling during
the recruitment and maintenance of precursor hematopoietic cells, it has been described to be
related to adipose tissue development in mice treated with conjugated linoleic acid [59]. With

Fig 7. Enriched biological pathways of genes targeted by 33 up-regulated and down-regulatedmiRNAs with significantly differential expression
level. Y-axis shows the significance level of enrichment after Bonferroni adjustment.

doi:10.1371/journal.pone.0117843.g007
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the highest number of reads in both chicken lines among the significantly differentially ex-
pressed miRNAs, miR-101 was found previously to be able to induce the differentiation of
3T3-L1 [60]. As a member of the miR-17–92 cluster, miR-17–3p can target RB and fatty acyl
desaturase genes [61,62], and enhance 3T3-L1 differentiation [9]. Through the regulation of
DLK1 level, miR-15a could disrupt adipogenic differentiation [12]. miR-15a can also target
Foxo1, and participate in the disruption of adipogenic differentiation and the regulation of in-
sulin synthesis [63–65]. miR-22 can regulate the PTEN/AKT pathway and target HDAC6
[66–68]; miR-206 and miR-1a can suppress hepatic lipogenesis [69]; miR-29b and miR-9 are
involved in insulin sensitivity and diabetes [70,71]; miR-31 and miR-32 participate in differen-
tiation of stem cells into adipocyte and lipid metabolism in oligodendrocytes [72,73]. Last but
not least, expression levels of 10 miRNAs can be perturbed in animals when fed with high-fat
diet (miR-142–5p and miR-101) [74–78], or with obesity or obesity-related diseases (miR-10a,
miR-218, miR-429, miR-200a, miR-200b, miR-451, miR-142–3p, and miR-454) [77,79–85],
which indicates that they could be potentially related to adipogenesis.

However, among the remaining 12 miRNAs, we found that miR-2188 affects embryonic de-
velopment in fishes [86,87]; miR-1306 is related to Alzheimer’s disease by targeting ADAM10
[88]; miR-1684 was differentially expressed in chicken lines selected for necrotic enteritis [89];
miR-1b could be potentially related to immunity genes in insects [90]; no literature was found
for the other 8 miRNAs (miR-3535, miR-1434, miR-1805–3p, miR-1551, miR-1563, miR-
1653, miR-1416, miR-460a). Though no direct evidence on their roles in adipogenesis or lipid
metabolism was found, we still could not exclude the possibility of their involvement.

We further analyzed gene expression data for birds from a time-course transcriptome pro-
filing project performed previously in our lab (GEO accession number: GSE51330), in which a
similar procedure for collecting chicken preadipocytes was used, and both broiler lines were
analyzed. As a result, among all genes targeted by the 33 differentially expressed miRNAs, 262
genes significantly differentially expressed had the same trend of expression levels, i.e. genes
targeted by up-regulated miRNAs having lower expression levels, and vice versa (S2 Fig., S6
Table). After gene ontology analysis, these 262 genes were also found to be significantly en-
riched in cytoskeleton regulation and chromatin regulator pathways.

In addition, 107 and 571 novel miRNAs were found in the lean and fat chicken lines, respec-
tively. We found 17 of 22 novle miRNAs selected for validation (77.3%) expressed in the same
RNA sample used for miRNA sequencing, but all with a relatively low level of expression. In
another study, 50 out of 53 novel miRNAs discovered in lancelet were verified by expression
analysis, after using the same software MIREAP in predicting novel miRNAs [91]. Further-
more, 18 of 25 (72.0%) novel miRNAs were confirmed in mice with ectopic expression analysis
[92]; 23 of 30 (76.6%) were verified in a pig study with direct PCR amplification [93]; 12 of 17
(70.6%) were detected by northern blot analysis in a human study [94]. All these studies have a
comparable success rate of novel miRNA validation with ours. We failed to validate 5 novel
miRNAs, possibly due to prediction accuracy, or limitation of experimental techniques to de-
tect these novel miRNAs [93,95]. Another possibility could be that the 5 novel miRNAs were
simply not real miRNAs, since 2 of them could not be amplified, and the remaining 3 had an ir-
regular melting curve when performing qRT-PCR.

Conclusions
Taken together, in this study, the expression profiling of abundantly and differentially express-
ed miRNAs in preadipocytes derived from two divergently selected chicken lines were per-
formed. Some miRNAs such as gga-miR-101 and gga-miR-1a were significantly differentially
expressed between the fat and lean chicken lines. After exhaustive literature mining and gene

Deep Sequencing Chicken Preadipocyte MicroRNAs

PLOSONE | DOI:10.1371/journal.pone.0117843 February 12, 2015 12 / 21



ontology analyses, the 33 differentially expressed miRNAs were found to potentially play im-
portant roles in several biological processes, such as chromatin regulator, cell morphogenesis,
cellular response to insulin stimulus, mesenchymal cell differentiation, which could be involved
in preadipocyte development. Our results will provide valuable resources and information for
further functional investigation on the relationship between miRNA function and
chicken adipogenesis.

Materials and Methods

Ethics statement
Animal work was conducted following the guidelines for the care and use of experimental ani-
mals established by Ministry of Science and Technology of People’s Republic of China (approv-
al number: 2006–398), and also approved by Laboratory Animal Management Committee of
Northeast Agricultural University.

Animals and cell culture
Broilers for miRNA expression profiling were selected from the 15th generation population of
Northeast Agricultural University broiler lines divergently selected for abdominal fat content
(NEAUHL), which showed 4.58 times difference in abdominal fat percentage between the fat
and lean lines. Both chicken lines were kept in the same environmental conditions, and had ac-
cess to feed and water ad libitum. Details on the selection program of the two lines can be
found in our previous report [34].

Chicken preadipocytes for miRNA sequencing library construction were collected accord-
ing to previously described methods with a few modifications [96,97], as well as a recent meth-
od published by our group [98]. Briefly, abdominal adipose tissue was taken from 12 fourteen-
days-old male broilers (6 each for the fat and lean lines) by sterile dissection following rapid de-
capitation, and then pooled together, respectively. Tissues were minced with scissors, then di-
gested in 2 mg/ml collagenase type I (Invitrogen, Carlsbad, CA, USA) for 65 min at 37°C with
shaking. Followed by filtration through a 20-μm screen and centrifugation at 300g for 10 min
at room temperature, the pellets (preadipocytes) were suspended in the Trizol Reagent (Invi-
trogen, Carlsbad, CA, USA), and used directly for total RNAs extraction by the Trizol method
following the manufacturer’s protocols (Invitrogen, Carlsbad, CA, USA).

RNA sample preparation and sequencing
Subsequently, total RNAs were separated on a 15% polyacrylamide gel, and RNA molecules in
the range of 18–30 nt were cut from the gel, extracted and ligated with appropriate adapters to
the 5’ and 3’ termini. A reverse transcription reaction followed by PCR of low cycle number
was performed to obtain sufficient products for Solexa sequencing (BGI, Shenzhen, China).

Bioinformatics analyses
Raw short reads were passed through a quality control procedure, including trimming adap-
tors, discarding sequences shorter than 18 nt, eliminating low-quality sequences and adaptor-
adaptor ligation, and removing all the repetitive and adaptor sequences. Data can be accessed
at NCBI SRA archive (SRR1562981 and SRR1563007). Generated clean short reads were
mapped onto the G. gallus genome (NCBI : GCA_000002315.2) using SOAP [99]. To identify
already known miRNAs, perfectly matched short reads were then aligned to the G. gallus
miRNA precursors deposited in the miRBase (release 20.0). The criteria used in the process
were: 1) the unique sequence must be in perfect alignment with the precursor; 2) The start
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position of the alignment must be within +2 and-2 nt of the mature miRNA located in the pre-
cursor. To identify degenerated fragments of mRNA or other non-coding RNAs, such as
rRNA, tRNA, and snoRNA, unique reads were screened against G. gallus non-coding RNA (ex-
cluding miRNA), and the annotated or predicted genes in the chicken reference genome (Gen-
eBank and Rfam). Reads that matched perfectly with over 20 locations in the genome
were removed.

The remaining short reads that could not be matched to known chicken miRNA precursors
were searched against the metazoan mature miRNAs in the Sanger miRBase (20.0) [100], using
the program Patscan to identify conserved miRNAs, with two mismatches allowed.

To find new miRNAs, we first removed those short reads sequenced less than twice in both
libraries, and the remaining short reads were checked using the software Einverted of Emboss,
to find step-loops or hairpin structures [101]. Secondly, an approach based on the characteris-
tic hairpin structure of miRNA precursor was used to predict novel miRNAs. Mireap, devel-
oped by BGI of China (http://sourceforge.net/projects/mireap/), was used to perform the
analysis, in which two constraints were used to detect novel miRNAs, the number of reads
(>5), and the number of locations mapped onto these miRNAs in the chicken genome (<10)
[91,102].

Differentially expressed miRNA analysis
For each miRNA, numbers of reads were normalized to the total number of reads in each li-
brary, respectively. A web tool IDEG6 (http://telethon.bio.unipd.it/bioinfo/IDEG6/) was ap-
plied to detect differentially expressed miRNAs between the two chicken lines, and the Fisher’s
exact test was used [103], which has been widely used in several other studies [104,105]. Circos
was used to plot the differentially expressed miRNA, and read numbers of identified miRNAs
in the two chicken lines as well [106].

qRT-PCR verification of sequencing results
Primers for 15 known miRNAs were designed, according to a previously published method
[107], to verify the sequencing results using quantitative RT-PCR method (S7 Table). From the
fat and lean broiler lines at the 16th generation, 5 chickens (14 days old) from each line were se-
lected, respectively. For each animal, preadipocytes from the abdominal adipose tissue were
collected, following the same procedure as described previously. Total RNA was extracted from
these individual preadipocyte samples. A total of 1μg RNA for each sample was reverse-tran-
scribed to cDNA using Reverse Transcription kits (TIANGEN Beijing, China). The real-time
RT-PCR was performed on ABI 7500 system using SYBR Green PCR Kit from Takara (Dalian,
China), with each miRNA checked in triplicate.

We selected 22 novel miRNAs for validation. According to their number of sequencing
reads, these miRNAs were divided into three groups, high, medium and low. For each group, 4
miRNAs for each line were selected, respectively, which included 2 miRNAs common to both
lines (S8 Table). Primers were designed for the regular stem-loop RT-PCR. The same RNA
samples as used in miRNA sequencing were analyzed here again for novel miRNA validation.
Kits for RNA reverse transcription and the real-time RT-PCR were from Promega (Madison,
WI, USA) and Roche (Indianapolis, IN, USA), respectively.

The chicken small nuclear RNA U6 was used as the internal control, and the relative expres-
sion level of each miRNA was calculated using the 2-ΔCt method, based on our experimental de-
sign. The t-test was used to determine the significance level of qRT-PCR expression level of 15
known miRNAs between the lean and fat chicken lines in the R statistical environment [108].
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Target gene prediction and gene ontology analysis
To predict genes targeted by miRNAs, TargetScan (http://www.targetscan.org/) was used
[109], and the relationship between miRNA and mRNA interaction was analyzed and plotted
by Cytoscape [110]. Gene ontology (GO) analyses of target genes were conducted by DAVID
(http://david.abcc.ncifcrf.gov/) [111].
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ing.
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